From 3a223bbb617274e011205887c3717bbb07606def Mon Sep 17 00:00:00 2001 From: DeiantV Date: Wed, 16 Aug 2023 17:53:13 -0500 Subject: [PATCH] Fix issues --- easy_infer.py | 52 +++++++++++++++++++++++++++++++------------------ i18n/en_US.json | 10 +++++++--- i18n/es_ES.json | 10 +++++++--- 3 files changed, 47 insertions(+), 25 deletions(-) diff --git a/easy_infer.py b/easy_infer.py index 5482f2f28..8216b65dc 100644 --- a/easy_infer.py +++ b/easy_infer.py @@ -156,8 +156,8 @@ def load_downloaded_model(url): infos.append(i18n("无法下载模型。")) yield "\n".join(infos) elif download_file == "downloaded": - print(i18n("模型下载成功。继续提取...")) - infos.append(i18n("模型下载成功。继续提取...")) + print(i18n("模型下载成功。")) + infos.append(i18n("模型下载成功。")) yield "\n".join(infos) elif download_file == "demasiado uso": raise Exception(i18n("最近查看或下载此文件的用户过多")) @@ -168,11 +168,11 @@ def load_downloaded_model(url): for filename in os.listdir(zips_path): if filename.endswith(".zip"): zipfile_path = os.path.join(zips_path,filename) + print(i18n("继续提取...")) + infos.append(i18n("继续提取...")) shutil.unpack_archive(zipfile_path, unzips_path, 'zip') model_name = os.path.basename(zipfile_path) logs_dir = os.path.join(parent_path,'logs', os.path.normpath(str(model_name).replace(".zip",""))) - print(i18n("模型下载成功。继续提取...")) - infos.append(i18n("模型下载成功。继续提取...")) yield "\n".join(infos) else: print(i18n("解压缩出错。")) @@ -285,8 +285,8 @@ def load_dowloaded_dataset(url): yield "\n".join(infos) raise Exception(i18n("下载模型时发生错误。")) elif download_file == "downloaded": - print(i18n("数据集下载成功。继续提取...")) - infos.append(i18n("数据集下载成功。继续提取...")) + print(i18n("模型下载成功。")) + infos.append(i18n("模型下载成功。")) yield "\n".join(infos) elif download_file == "demasiado uso": raise Exception(i18n("最近查看或下载此文件的用户过多")) @@ -301,6 +301,9 @@ def load_dowloaded_dataset(url): print("....") foldername = file.replace(".zip","").replace(" ","").replace("-","_") dataset_path = os.path.join(datasets_path, foldername) + print(i18n("继续提取...")) + infos.append(i18n("继续提取...")) + yield "\n".join(infos) shutil.unpack_archive(file_path, unzips_path, 'zip') if os.path.exists(dataset_path): shutil.rmtree(dataset_path) @@ -312,12 +315,19 @@ def load_dowloaded_dataset(url): song_path = os.path.join(root, song) if song.endswith(tuple(audio_extenions)): shutil.move(song_path, dataset_path) + else: + print(i18n("解压缩出错。")) + infos.append(i18n("解压缩出错。")) + yield "\n".join(infos) + + if os.path.exists(zips_path): shutil.rmtree(zips_path) if os.path.exists(unzips_path): shutil.rmtree(unzips_path) + print(i18n("数据集加载成功。")) infos.append(i18n("数据集加载成功。")) yield "\n".join(infos) except Exception as e: @@ -443,14 +453,12 @@ def load_downloaded_backup(url): infos = [] logs_folders = ['0_gt_wavs','1_16k_wavs','2a_f0','2b-f0nsf','3_feature256','3_feature768'] zips_path = os.path.join(parent_path, 'zips') - unzips_path = os.path.join(parent_path, 'unzips') + unzips_path = os.path.join(parent_path, 'logs') weights_path = os.path.join(parent_path, 'weights') logs_dir = "" if os.path.exists(zips_path): shutil.rmtree(zips_path) - if os.path.exists(unzips_path): - shutil.rmtree(unzips_path) os.mkdir(zips_path) @@ -460,8 +468,8 @@ def load_downloaded_backup(url): infos.append(i18n("无法下载模型。")) yield "\n".join(infos) elif download_file == "downloaded": - print(i18n("模型下载成功。继续提取...")) - infos.append(i18n("模型下载成功。继续提取...")) + print(i18n("模型下载成功。")) + infos.append(i18n("模型下载成功。")) yield "\n".join(infos) elif download_file == "demasiado uso": raise Exception(i18n("最近查看或下载此文件的用户过多")) @@ -473,10 +481,10 @@ def load_downloaded_backup(url): if filename.endswith(".zip"): zipfile_path = os.path.join(zips_path,filename) # zip_dir_name = os.path.splitext(filename)[0] - unzip_dir = os.path.join(parent_path,'logs') - shutil.unpack_archive(zipfile_path, unzip_dir, 'zip') - print(i18n("模型下载成功。继续提取...")) - infos.append(i18n("模型下载成功。继续提取...")) + # unzip_dir = os.path.join(parent_path,'logs') + print(i18n("继续提取...")) + infos.append(i18n("继续提取...")) + shutil.unpack_archive(zipfile_path, unzips_path, 'zip') yield "\n".join(infos) else: print(i18n("解压缩出错。")) @@ -484,12 +492,15 @@ def load_downloaded_backup(url): yield "\n".join(infos) result = "" + for filename in os.listdir(unzips_path): + if filename.endswith(".zip"): + os.remove(filename) + if os.path.exists(zips_path): shutil.rmtree(zips_path) - if os.path.exists(unzips_path): - shutil.rmtree(unzips_path) - print(i18n("模型已正确加载。")) - infos.append("\n" + i18n("模型已正确加载。")) + print(i18n("备份已成功上传。")) + infos.append("\n" + i18n("备份已成功上传。")) + yield "\n".join(infos) os.chdir(parent_path) return result except Exception as e: @@ -1093,6 +1104,7 @@ def publish_models(): def download_model(): gr.Markdown(value="# " + i18n("下载模型")) + gr.Markdown(value=i18n("它用于下载您的推理模型。")) with gr.Row(): model_url=gr.Textbox(label=i18n("网址")) with gr.Row(): @@ -1103,6 +1115,7 @@ def download_model(): def download_backup(): gr.Markdown(value="# " + i18n("下载备份")) + gr.Markdown(value=i18n("它用于下载您的训练备份。")) with gr.Row(): model_url=gr.Textbox(label=i18n("网址")) with gr.Row(): @@ -1120,6 +1133,7 @@ def update_dataset_list(name): def download_dataset(trainset_dir4): gr.Markdown(value="# " + i18n("下载数据集")) + gr.Markdown(value=i18n("它用于下载您的数据集。")) with gr.Row(): dataset_url=gr.Textbox(label=i18n("网址")) with gr.Row(): diff --git a/i18n/en_US.json b/i18n/en_US.json index 1cbe43056..c05ef13f2 100644 --- a/i18n/en_US.json +++ b/i18n/en_US.json @@ -26,13 +26,17 @@ "无模型保存(PTH)": "Saved without inference model...", "保存模型时发生错误": "An error occurred saving the model", "您要保存的模型不存在,请确保输入的名称正确。": "The model you want to save does not exist, be sure to enter the correct name.", - "无法下载模型。": "The model could not be downloaded.", + "无法下载模型。": "The file could not be downloaded.", "解压缩出错。": "Unzip error.", "added.index 文件的路径(如果它没有自动找到该文件)": "Path to your added.index file (if it didn't automatically find it)", - "模型下载成功。继续提取...": "It has been downloaded successfully. ", - "数据集下载成功。继续提取...": "It has been downloaded successfully. ", + "模型下载成功。": "It has been downloaded successfully.", + "继续提取...": "Proceeding with the extraction...", + "备份已成功上传。": "The Backup has been uploaded successfully.", "数据集加载成功。": "The Dataset has been loaded successfully.", "模型已正确加载。": "The Model has been loaded successfully.", + "它用于下载您的推理模型。": "It is used to download your inference models.", + "它用于下载您的训练备份。": "It is used to download your training backups.", + "它用于下载您的数据集。": "It is used to download your dataset.", "未找到可上传的相关文件": "No relevant file was found to upload.", "该模型可用于推理,并有 .index 文件。": "The model works for inference, and has the .index file.", "该模型可用于推理,但没有 .index 文件。": "The model works for inference, but it doesn't have the .index file.", diff --git a/i18n/es_ES.json b/i18n/es_ES.json index 0109fb82e..a346d7ce0 100644 --- a/i18n/es_ES.json +++ b/i18n/es_ES.json @@ -26,12 +26,16 @@ "无模型保存(PTH)": "Guardado sin modelo de inferencia...", "保存模型时发生错误": "Ocurrio un error guardando el modelo", "您要保存的模型不存在,请确保输入的名称正确。": "El modelo que desea guardar no existe, asegúrese de introducir el nombre correcto.", - "无法下载模型。": "No se ha podido descargar el modelo.", + "无法下载模型。": "No se ha podido descargar el archivo.", "解压缩出错。": "Error al descomprimir.", - "模型下载成功。继续提取...": "Se ha descargado correctamente. Procediendo con la extracción...", - "数据集下载成功。继续提取...": "Se ha descargado correctamente. Procediendo con la extracción...", + "模型下载成功。": "Se ha descargado correctamente.", + "继续提取...": "Procediendo con la extracción...", + "备份已成功上传。": "El Backup se ha cargado correctamente.", "数据集加载成功。": "El Dataset se ha cargado correctamente. ", "模型已正确加载。": "El Modelo se ha cargado correctamente.", + "它用于下载您的推理模型。": "Sirve para descargar tus modelos de inferencia.", + "它用于下载您的训练备份。": "Sirve para descargar tus backups de entrenamiento.", + "它用于下载您的数据集。": "Sirve para descargar tus datasets.", "未找到可上传的相关文件": "No se encontró ningún archivo relevante para cargar.", "该模型可用于推理,并有 .index 文件。": "El modelo funciona para inferencia, y tiene el archivo .index.", "该模型可用于推理,但没有 .index 文件。": "El modelo funciona para inferencia, pero no tiene el archivo .index.",