-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathcompletion_manager.py
205 lines (169 loc) · 8.04 KB
/
completion_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from config_loader import config
import re
from utils import maintain_token_limit
class CompletionManager:
def __init__(self, verbose=False):
"""Initialize the CompletionManager with the TTS client."""
self.client = None
self.model = None
self.verbose = verbose
self._setup_client()
def _setup_client(self):
"""Instantiates the appropriate AI client based on configuration file."""
if config.COMPLETIONS_API == "openai":
from llm_apis.openai_client import OpenAIClient
self.client = OpenAIClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "together":
from llm_apis.togetherai_client import TogetherAIClient
self.client = TogetherAIClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "anthropic":
from llm_apis.anthropic_client import AnthropicClient
self.client = AnthropicClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "perplexity":
from llm_apis.perplexity_client import PerplexityClient
self.client = PerplexityClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "openrouter":
from llm_apis.openrouter_client import OpenRouterClient
self.client = OpenRouterClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "groq":
from llm_apis.groq_client import GroqClient
self.client = GroqClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "tabbyapi":
from llm_apis.tabbyapi_client import TabbyApiClient
self.client = TabbyApiClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "google":
from llm_apis.gemini_client import GeminiClient
self.client = GeminiClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "portkey":
from llm_apis.portkey_client import PortkeyClient
self.client = PortkeyClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "portkey_prompt":
from llm_apis.portkey_prompt_client import PortkeyPromptClient
self.client = PortkeyPromptClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "lm_studio":
from llm_apis.lm_studio_client import LM_StudioClient
if hasattr(config, 'LM_STUDIO_API_BASE_URL'):
self.client = LM_StudioClient(base_url=config.LM_STUDIO_API_BASE_URL, verbose=self.verbose)
else:
print("No LM_STUDIO_API_BASE_URL found in config.py, using default")
self.client = LM_StudioClient(verbose=self.verbose)
elif config.COMPLETIONS_API == "ollama":
from llm_apis.ollama_client import OllamaClient
if hasattr(config, 'OLLAMA_API_BASE_URL'):
self.client = OllamaClient(base_url=config.OLLAMA_API_BASE_URL, verbose=self.verbose)
else:
print("No OLLAMA_API_BASE_URL found in config.py, using default")
self.client = OllamaClient(verbose=self.verbose)
else:
raise ValueError("Unsupported completion API service configured")
def get_completion(self, messages, model, **kwargs):
"""Get completion from the selected AI client and return the entire response.
Args:
messages (list): List of messages.
model (str): Model for completion.
**kwargs: Additional keyword arguments.
Returns:
str: The complete response from the AI client, or None if an error occurs.
"""
try:
# Make sure the token count is within the limit
#messages = maintain_token_limit(messages, config.MAX_TOKENS)
completion_stream = self.client.stream_completion(messages, model, **kwargs)
# Accumulate the entire response
full_response = ""
for chunk in completion_stream:
full_response += chunk
return full_response
except Exception as e:
if self.verbose:
import traceback
traceback.print_exc()
else:
print(f"An error occurred while getting completion: {e}")
return None
def get_completion_stream(self, messages, model, **kwargs):
"""Get completion stream from the selected AI client.
Args:
messages (list): List of messages.
model (str): Model for completion.
**kwargs: Additional keyword arguments.
Returns:
generator: Stream of sentences or clipboard text chunks generated by the AI client,
or None if an error occurs.
"""
try:
# Make sure the token count is within the limit
messages = maintain_token_limit(messages, config.MAX_TOKENS)
completion_stream = self.client.stream_completion(messages, model, **kwargs)
return completion_stream
except Exception as e:
if self.verbose:
import traceback
traceback.print_exc()
else:
print(f"An error occurred while getting completion: {e}")
return None
def process_text_stream(self, text_stream, sentence_callback=None, marker_tuples=None):
"""
This takes in a stream of text, it will search for text between the markers and pass it to the designated callback functions if provided.
Text between markers will be removed from the stream before being passed to the sentence_callback function.
Args:
text_stream: An iterable providing chunks of text.
sentence_callback: Optional callback function for sentences.
marker_tuples: Optional list of tuples (start_marker, end_marker, callback_function).
Returns:
str: The full, unmodified input text.
"""
full_text = ""
buffer = ""
active_markers = []
sentence_pattern = re.compile(r'(.*?[.!?](?:\s|$)|\n)', re.DOTALL)
def process_active_markers():
nonlocal buffer
for i, (start, end, callback) in enumerate(active_markers):
if end in buffer:
marked_text, _, rest = buffer.partition(end)
if marked_text.strip():
if callback:
callback(marked_text)
buffer = rest
return i
return -1
def process_new_markers_or_sentences():
nonlocal buffer
if marker_tuples:
for start, end, callback in marker_tuples:
if start in buffer:
_, _, buffer = buffer.partition(start)
active_markers.append((start, end, callback))
return True
match = sentence_pattern.match(buffer)
if match:
sentence = match.group(1)
if sentence_callback and sentence.strip():
sentence_callback(sentence.strip())
buffer = buffer[len(sentence):]
return True
return False
for chunk in text_stream:
full_text += chunk
buffer += chunk
while buffer:
if active_markers:
marker_index = process_active_markers()
if marker_index >= 0:
active_markers.pop(marker_index)
else:
break
else:
if not process_new_markers_or_sentences():
break
# Process any remaining buffer
while buffer:
if active_markers:
active_markers.pop(0)
else:
if sentence_callback and buffer.strip():
sentence_callback(buffer.strip())
break
return full_text