-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhack_train_1_result.py
169 lines (135 loc) · 6.74 KB
/
hack_train_1_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""Script for baseline training. Model is ResNet152 (pretrained on ImageNet)."""
import os
import pickle
import sys
from argparse import ArgumentParser
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import tqdm
from torch.nn import functional as fnn
from torch.utils import data
from torchvision import transforms
from hack_utils_1_result import NUM_PTS, CROP_SIZE
from hack_utils_1_result import ScaleMinSideToSize, CropCenter, TransformByKeys
from hack_utils_1_result import ThousandLandmarksDataset
from hack_utils_1_result import restore_landmarks_batch, create_submission
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def parse_arguments():
parser = ArgumentParser(__doc__)
parser.add_argument("--name", "-n", help="Experiment name (for saving checkpoints and submits).",
default="baseline")
parser.add_argument("--data", "-d", help="Path to dir with target images & landmarks.", default=None)
parser.add_argument("--model", "-m", help="Path to saved model to train further", default=None)
parser.add_argument("--batch-size", "-b", default=512, type=int) # 512 is OK for resnet18 finetune @ 6Gb of VRAM
parser.add_argument("--epochs", "-e", default=1, type=int)
parser.add_argument("--learning-rate", "-lr", default=1e-3, type=float)
parser.add_argument("--gpu", action="store_true")
parser.add_argument("--noresult", "-nr", action="store_true")
return parser.parse_args()
def train(model, loader, loss_fn, optimizer, device):
model.train()
train_loss = []
for batch in tqdm.tqdm(loader, total=len(loader), desc="training..."):
images = batch["image"].to(device) # B x 3 x CROP_SIZE x CROP_SIZE
landmarks = batch["landmarks"] # B x (2 * NUM_PTS)
pred_landmarks = model(images).cpu() # B x (2 * NUM_PTS)
loss = loss_fn(pred_landmarks, landmarks, reduction="mean")
train_loss.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
return np.mean(train_loss)
def validate(model, loader, loss_fn, device):
model.eval()
val_loss = []
for batch in tqdm.tqdm(loader, total=len(loader), desc="validation..."):
images = batch["image"].to(device)
landmarks = batch["landmarks"]
with torch.no_grad():
pred_landmarks = model(images).cpu()
loss = loss_fn(pred_landmarks, landmarks, reduction="mean")
val_loss.append(loss.item())
return np.mean(val_loss)
def predict(model, loader, device):
model.eval()
predictions = np.zeros((len(loader.dataset), NUM_PTS, 2))
for i, batch in enumerate(tqdm.tqdm(loader, total=len(loader), desc="test prediction...")):
images = batch["image"].to(device)
with torch.no_grad():
pred_landmarks = model(images).cpu()
pred_landmarks = pred_landmarks.numpy().reshape((len(pred_landmarks), NUM_PTS, 2)) # B x NUM_PTS x 2
fs = batch["scale_coef"].numpy() # B
margins_x = batch["crop_margin_x"].numpy() # B
margins_y = batch["crop_margin_y"].numpy() # B
prediction = restore_landmarks_batch(pred_landmarks, fs, margins_x, margins_y) # B x NUM_PTS x 2
predictions[i * loader.batch_size: (i + 1) * loader.batch_size] = prediction
return predictions
def main(args):
# 1. prepare data & models
train_transforms = transforms.Compose([
ScaleMinSideToSize((CROP_SIZE, CROP_SIZE)),
CropCenter(CROP_SIZE),
TransformByKeys(transforms.ToPILImage(), ("image",)),
TransformByKeys(transforms.ToTensor(), ("image",)),
TransformByKeys(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ("image",)),
])
print("Reading data...")
train_dataset = ThousandLandmarksDataset(os.path.join(args.data, 'train'), train_transforms, split="train")
train_dataloader = data.DataLoader(train_dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True,
shuffle=True, drop_last=True)
val_dataset = ThousandLandmarksDataset(os.path.join(args.data, 'train'), train_transforms, split="val")
val_dataloader = data.DataLoader(val_dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True,
shuffle=False, drop_last=False)
print("Creating model...")
device = torch.device("cuda: 0") if args.gpu else torch.device("cpu")
if args.model is None:
model = models.resnet152(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, 2 * NUM_PTS, bias=True)
else:
model = models.resnet152(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, 2 * NUM_PTS, bias=True)
with open(f"{args.model}", "rb") as fp:
state_dict = torch.load(fp, map_location="cpu")
model.load_state_dict(state_dict)
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, amsgrad=True)
loss_fn = fnn.mse_loss
train_loss_history = []
val_loss_history = []
# 2. train & validate
print("Ready for training...")
best_val_loss = np.inf
for epoch in range(args.epochs):
train_loss = train(model, train_dataloader, loss_fn, optimizer, device=device)
train_loss_history.append(train_loss)
val_loss = validate(model, val_dataloader, loss_fn, device=device)
val_loss_history.append(val_loss)
print("Epoch #{:2}:\ttrain loss: {:5.2}\tval loss: {:5.2}".format(epoch, train_loss, val_loss))
if val_loss < best_val_loss:
best_val_loss = val_loss
with open(f"{args.name}_best.pth", "wb") as fp:
torch.save(model.state_dict(), fp)
print(train_loss_history)
print(val_loss_history)
# 3. predict
if args.noresult:
pass
else:
test_dataset = ThousandLandmarksDataset(os.path.join(args.data, 'test'), train_transforms, split="test")
test_dataloader = data.DataLoader(test_dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True,
shuffle=False, drop_last=False)
with open(f"{args.name}_best.pth", "rb") as fp:
best_state_dict = torch.load(fp, map_location="cpu")
model.load_state_dict(best_state_dict)
test_predictions = predict(model, test_dataloader, device)
with open(f"{args.name}_test_predictions.pkl", "wb") as fp:
pickle.dump({"image_names": test_dataset.image_names,
"landmarks": test_predictions}, fp)
create_submission(args.data, test_predictions, f"{args.name}_submit.csv")
if __name__ == '__main__':
args = parse_arguments()
sys.exit(main(args))