-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhmm_model.py
157 lines (133 loc) · 5.62 KB
/
hmm_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import numpy as np
from data_process import HMMDataLoader
import os
class HMM:
def __init__(self, data_path="../seg-data/training/pku_training.utf8"):
self.A = None # 状态转移矩阵
self.B = None # 状态与观察序列转移矩阵
self.Pi = None # 初始状态概率
self.data_loader = HMMDataLoader(data_path)
self._get_index()
def _get_index(self):
self.idxed_corpus, (self.obsv2idx, self.idx2obsv), (self.hide2idx, self.idx2hide) = self.data_loader.index_corpus()
self.num_obsv = len(self.obsv2idx.keys())
self.num_hide = len(self.hide2idx.keys())
print("Status dict:", self.hide2idx)
def build_supervised_model(self, smooth="add1"):
if smooth not in ['add1']:
raise ValueError("Invalid value for smooth, only accept 'add1'.")
if self.num_hide and self.num_obsv:
self.Pi = np.zeros(self.num_hide)
self.A = np.zeros([self.num_hide, self.num_hide])
self.B = np.zeros([self.num_obsv, self.num_hide])
else:
self.Pi = None
self.A = None
self.B = None
# 统计频率,计算A,B,Pi参数
for seq in self.idxed_corpus:
for i in range(len(seq)):
obsv_cur, hide_cur = seq[i]
if (i == 0):
self.Pi[hide_cur] += 1
else:
obsv_pre, hide_pre = seq[i - 1]
self.A[hide_cur, hide_pre] += 1
self.B[obsv_cur, hide_cur] += 1
# Todo:增加其他平滑处理方案
# +1平滑
if smooth == 'add1':
self.A += 1
self.B += 1
self.Pi += 1
self.Pi /= self.Pi.sum()
self.A /= self.A.sum(axis=1)[:, None]
self.B /= self.B.sum(axis=1)[:, None]
return self.A, self.B, self.Pi
def get_status_seq(self, obsv_seq):
return self._veterbi(obsv_seq)
def _veterbi(self, obsv_seq):
# 初始化
len_seq = len(obsv_seq)
f = np.zeros([len_seq, self.num_hide])
f_arg = np.zeros([len_seq, self.num_hide], dtype=int)
for i in range(0, self.num_hide):
f[0, i] = self.Pi[i] * self.B[obsv_seq[0], i]
f_arg[0, i] = 0
# 动态规划求解
for i in range(1, len_seq):
for j in range(self.num_hide):
fs = [f[i-1, k] * self.A[j, k] * self.B[obsv_seq[i], j] for k in range(self.num_hide)]
f[i, j] = max(fs)
f_arg[i, j] = np.argmax(fs)
# 反向求解最好的隐藏序列
hidden_seq = [0] * len_seq
z = np.argmax(f[len_seq-1, self.num_hide-1])
hidden_seq[len_seq-1] = z
for i in reversed(range(1, len_seq)):
z = f_arg[i, z]
hidden_seq[i-1] = z
return hidden_seq
def cut_sentence(self, sentence):
sentence = sentence.strip()
idxed_seq = [self.obsv2idx[obsv] if obsv in self.obsv2idx.keys() else 0 for obsv in sentence]
idxed_hide = self.get_status_seq(idxed_seq)
hide = [self.idx2hide[idx] for idx in idxed_hide]
assert len(sentence) == len(hide), "状态序列与观测序列长度不一致"
words = []
lo, hi = 0, 0
for i in range(len(hide)):
if hide[i] == 'B':
lo = i
elif hide[i] == 'E':
hi = i + 1
words.append(sentence[lo:hi])
elif hide[i] == 'S':
words.append(sentence[i:i + 1])
if hide[-1] == 'B':
words.append(sentence[-1]) # 处理 SB,EB
elif hide[-1] == 'M':
words.append(sentence[lo:-1])
assert len(sentence) == len("".join(words)), "还原失败,长度不一致\n{0}\n{1}\n{2}".format(sentence, "".join(words),
"".join(hide))
return words
def save(self, path, name="pku"):
""" 保存隐式马尔可夫模型 """
if name == "pku":
np.save(os.path.join(path, "Pi.npy"), self.Pi)
np.save(os.path.join(path, "A.npy"), self.A)
np.save(os.path.join(path, "B.npy"), self.B)
elif name == "msr":
np.save(os.path.join(path, "Pi_MSR.npy"), self.Pi)
np.save(os.path.join(path, "A_MSR.npy"), self.A)
np.save(os.path.join(path, "B_MSR.npy"), self.B)
else:
print("parameter 'name' must be pku or msr!")
def load(self, path, name="pku"):
""" 加载隐式马尔可夫模型 """
if name == "pku":
self.Pi = np.load(os.path.join(path, "Pi.npy"))
self.A = np.load(os.path.join(path, "A.npy"))
self.B = np.load(os.path.join(path, "B.npy"))
self.num_obsv = self.B.shape[0]
self.num_hide = self.B.shape[1]
elif name == "msr":
self.Pi = np.load(os.path.join(path, "Pi_MSR.npy"))
self.A = np.load(os.path.join(path, "A_MSR.npy"))
self.B = np.load(os.path.join(path, "B_MSR.npy"))
self.num_obsv = self.B.shape[0]
self.num_hide = self.B.shape[1]
else:
print("parameter 'name' must be pku or msr!")
# 训练并保存模型
# data_path="../seg-data/training/pku_training.utf8"
# data_path="../seg-data/training/msr_training.utf8"
# hmm = HMM(data_path)
# A, B, Pi = hmm.build_supervised_model()
# hmm.save("model", "msr")
#
# hmm.load("model", "msr")
# result = hmm.cut_sentence("共同创造美好的新世纪——二○○一年新年贺词")
# print(result)