-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathangular_spectrum.py
125 lines (93 loc) · 3.85 KB
/
angular_spectrum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Project :Computer-Generated-Hologram
@File :angular_spectrum.py
@Author :JackHCC
@Date :2022/10/5 14:10
@Desc :
'''
from PIL import Image
import numpy as np
from scipy.fftpack import fft2, fftshift, ifft2
import matplotlib.pyplot as plt
def format_img(img):
# img = img ** 0.5
format_img = img * 255
format_img = format_img.astype(np.uint8)
return format_img
def asm(input_image, z, pitch, lambda_, mu=1, cut=True, direction="forward", band_limit=True):
input_image = np.array(input_image)
h, w = input_image.shape
height, width = h * mu, w * mu
u0 = 1 / width / pitch
v0 = 1 / height / pitch
pad_img = np.zeros((height, width))
yy = v0 * np.array(range(-height // 2, height // 2))
xx = u0 * np.array(range(-width // 2, width // 2))
x, y = np.meshgrid(xx, yy)
pad_img[height//2-h//2:height//2+h//2, width//2-w//2:width//2+w//2] = input_image
if direction == "forward":
trans = np.exp(1j * 2 * np.pi / lambda_ * z * np.sqrt(1 - np.power(lambda_ * x, 2) - np.power(lambda_ * y, 2)))
else:
trans = np.exp(-1j * 2 * np.pi / lambda_ * z * np.sqrt(1 - np.power(lambda_ * x, 2) - np.power(lambda_ * y, 2)))
if band_limit:
x_limit = 1 / np.sqrt(np.power(2 * 1 / width / pitch * z, 2) + 1) / lambda_
y_limit = 1 / np.sqrt(np.power(2 * 1 / height / pitch * z, 2) + 1) / lambda_
trans[np.abs(x) > x_limit] = 0
trans[np.abs(y) > y_limit] = 0
final = fftshift(ifft2(fftshift(trans * fftshift(fft2(fftshift(pad_img))))))
if cut:
final = final[height//2-h//2:height//2+h//2, width//2-w//2:width//2+w//2]
return final
def asm_shift(input_image, z, pitch, lambda_, mu=1, cut=True, direction="forward", band_limit=True, shift=True):
input_image = np.array(input_image)
h, w = input_image.shape
height, width = h * mu, w * mu
u0 = 1 / width / pitch
v0 = 1 / height / pitch
pad_img = np.zeros((height, width))
yy = v0 * np.array(range(-height // 2, height // 2))
xx = u0 * np.array(range(-width // 2, width // 2))
x, y = np.meshgrid(xx, yy)
pad_img[height // 2 - h // 2:height // 2 + h // 2, width // 2 - w // 2:width // 2 + w // 2] = input_image
if direction == "forward":
trans = np.exp(1j * 2 * np.pi / lambda_ * z * np.sqrt(1 - np.power(lambda_ * x, 2) - np.power(lambda_ * y, 2)))
else:
trans = np.exp(-1j * 2 * np.pi / lambda_ * z * np.sqrt(1 - np.power(lambda_ * x, 2) - np.power(lambda_ * y, 2)))
if band_limit:
x_limit = 1 / np.sqrt(np.power(2 * 1 / width / pitch * z, 2) + 1) / lambda_
y_limit = 1 / np.sqrt(np.power(2 * 1 / height / pitch * z, 2) + 1) / lambda_
trans[np.abs(x) > x_limit] = 0
trans[np.abs(y) > y_limit] = 0
if shift:
final = ifft2(trans * fftshift(fft2(pad_img)))
else:
final = ifft2(trans * fft2(pad_img))
if cut:
final = final[height // 2 - h // 2:height // 2 + h // 2, width // 2 - w // 2:width // 2 + w // 2]
return final
if __name__ == "__main__":
p = np.zeros((1024, 1024))
p[256:768, 256:768] = 1
# image_path = "../../Res/Set5/GTmod12/butterfly.png"
# p = Image.open(image_path, mode="r")
# # convert RGB image to Gray image
# p = p.convert("L")
plt.figure(1)
plt.imshow(p, cmap="gray")
pitch = 8 * pow(10, -3)
z = pitch * 1024 * 200
lambda_ = 638 * pow(10, -6)
final = asm(p, z, pitch, lambda_, band_limit=False)
final_limit = asm(p, z, pitch, lambda_, band_limit=True)
final_show = np.abs(final)
final_show /= np.max(final_show)
final_show = format_img(final_show)
plt.figure(2)
plt.imshow(final_show, cmap="gray")
final_limit_show = np.abs(final_limit)
final_limit_show /= np.max(final_limit_show)
plt.figure(3)
plt.imshow(final_limit_show, cmap="gray")
plt.show()