forked from graphdeeplearning/benchmarking-gnns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTUs.py
251 lines (187 loc) · 10.2 KB
/
TUs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import pickle
import torch.utils.data
import time
import os
import numpy as np
import csv
import dgl
from dgl.data import TUDataset
from dgl.data import LegacyTUDataset
import random
random.seed(42)
from sklearn.model_selection import StratifiedKFold, train_test_split
import csv
def get_all_split_idx(dataset):
"""
- Split total number of graphs into 3 (train, val and test) in 80:10:10
- Stratified split proportionate to original distribution of data with respect to classes
- Using sklearn to perform the split and then save the indexes
- Preparing 10 such combinations of indexes split to be used in Graph NNs
- As with KFold, each of the 10 fold have unique test set.
"""
root_idx_dir = './data/TUs/'
if not os.path.exists(root_idx_dir):
os.makedirs(root_idx_dir)
all_idx = {}
# If there are no idx files, do the split and store the files
if not (os.path.exists(root_idx_dir + dataset.name + '_train.index')):
print("[!] Splitting the data into train/val/test ...")
# Using 10-fold cross val to compare with benchmark papers
k_splits = 10
cross_val_fold = StratifiedKFold(n_splits=k_splits, shuffle=True)
k_data_splits = []
# this is a temporary index assignment, to be used below for val splitting
for i in range(len(dataset.graph_lists)):
dataset[i][0].a = lambda: None
setattr(dataset[i][0].a, 'index', i)
for indexes in cross_val_fold.split(dataset.graph_lists, dataset.graph_labels):
remain_index, test_index = indexes[0], indexes[1]
remain_set = format_dataset([dataset[index] for index in remain_index])
# Gets final 'train' and 'val'
train, val, _, __ = train_test_split(remain_set,
range(len(remain_set.graph_lists)),
test_size=0.111,
stratify=remain_set.graph_labels)
train, val = format_dataset(train), format_dataset(val)
test = format_dataset([dataset[index] for index in test_index])
# Extracting only idxs
idx_train = [item[0].a.index for item in train]
idx_val = [item[0].a.index for item in val]
idx_test = [item[0].a.index for item in test]
f_train_w = csv.writer(open(root_idx_dir + dataset.name + '_train.index', 'a+'))
f_val_w = csv.writer(open(root_idx_dir + dataset.name + '_val.index', 'a+'))
f_test_w = csv.writer(open(root_idx_dir + dataset.name + '_test.index', 'a+'))
f_train_w.writerow(idx_train)
f_val_w.writerow(idx_val)
f_test_w.writerow(idx_test)
print("[!] Splitting done!")
# reading idx from the files
for section in ['train', 'val', 'test']:
with open(root_idx_dir + dataset.name + '_'+ section + '.index', 'r') as f:
reader = csv.reader(f)
all_idx[section] = [list(map(int, idx)) for idx in reader]
return all_idx
class DGLFormDataset(torch.utils.data.Dataset):
"""
DGLFormDataset wrapping graph list and label list as per pytorch Dataset.
*lists (list): lists of 'graphs' and 'labels' with same len().
"""
def __init__(self, *lists):
assert all(len(lists[0]) == len(li) for li in lists)
self.lists = lists
self.graph_lists = lists[0]
self.graph_labels = lists[1]
def __getitem__(self, index):
return tuple(li[index] for li in self.lists)
def __len__(self):
return len(self.lists[0])
def self_loop(g):
"""
Utility function only, to be used only when necessary as per user self_loop flag
: Overwriting the function dgl.transform.add_self_loop() to not miss ndata['feat'] and edata['feat']
This function is called inside a function in TUsDataset class.
"""
new_g = dgl.DGLGraph()
new_g.add_nodes(g.number_of_nodes())
new_g.ndata['feat'] = g.ndata['feat']
src, dst = g.all_edges(order="eid")
src = dgl.backend.zerocopy_to_numpy(src)
dst = dgl.backend.zerocopy_to_numpy(dst)
non_self_edges_idx = src != dst
nodes = np.arange(g.number_of_nodes())
new_g.add_edges(src[non_self_edges_idx], dst[non_self_edges_idx])
new_g.add_edges(nodes, nodes)
# This new edata is not used since this function gets called only for GCN, GAT
# However, we need this for the generic requirement of ndata and edata
new_g.edata['feat'] = torch.zeros(new_g.number_of_edges())
return new_g
class TUsDataset(torch.utils.data.Dataset):
def __init__(self, name):
t0 = time.time()
self.name = name
#dataset = TUDataset(self.name, hidden_size=1)
dataset = LegacyTUDataset(self.name, hidden_size=1) # dgl 4.0
# frankenstein has labels 0 and 2; so correcting them as 0 and 1
if self.name == "FRANKENSTEIN":
dataset.graph_labels = np.array([1 if x==2 else x for x in dataset.graph_labels])
print("[!] Dataset: ", self.name)
# this function splits data into train/val/test and returns the indices
self.all_idx = get_all_split_idx(dataset)
self.all = dataset
self.train = [self.format_dataset([dataset[idx] for idx in self.all_idx['train'][split_num]]) for split_num in range(10)]
self.val = [self.format_dataset([dataset[idx] for idx in self.all_idx['val'][split_num]]) for split_num in range(10)]
self.test = [self.format_dataset([dataset[idx] for idx in self.all_idx['test'][split_num]]) for split_num in range(10)]
print("Time taken: {:.4f}s".format(time.time()-t0))
def format_dataset(self, dataset):
"""
Utility function to recover data,
INTO-> dgl/pytorch compatible format
"""
graphs = [data[0] for data in dataset]
labels = [data[1] for data in dataset]
for graph in graphs:
#graph.ndata['feat'] = torch.FloatTensor(graph.ndata['feat'])
graph.ndata['feat'] = graph.ndata['feat'].float() # dgl 4.0
# adding edge features for Residual Gated ConvNet, if not there
if 'feat' not in graph.edata.keys():
edge_feat_dim = graph.ndata['feat'].shape[1] # dim same as node feature dim
graph.edata['feat'] = torch.ones(graph.number_of_edges(), edge_feat_dim)
return DGLFormDataset(graphs, labels)
# form a mini batch from a given list of samples = [(graph, label) pairs]
def collate(self, samples):
# The input samples is a list of pairs (graph, label).
graphs, labels = map(list, zip(*samples))
labels = torch.tensor(np.array(labels))
#tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))]
#tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ]
#snorm_n = torch.cat(tab_snorm_n).sqrt()
#tab_sizes_e = [ graphs[i].number_of_edges() for i in range(len(graphs))]
#tab_snorm_e = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_e ]
#snorm_e = torch.cat(tab_snorm_e).sqrt()
batched_graph = dgl.batch(graphs)
return batched_graph, labels
# prepare dense tensors for GNNs using them; such as RingGNN, 3WLGNN
def collate_dense_gnn(self, samples):
# The input samples is a list of pairs (graph, label).
graphs, labels = map(list, zip(*samples))
labels = torch.tensor(np.array(labels))
#tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))]
#tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ]
#snorm_n = tab_snorm_n[0][0].sqrt()
#batched_graph = dgl.batch(graphs)
g = graphs[0]
adj = self._sym_normalize_adj(g.adjacency_matrix().to_dense())
"""
Adapted from https://github.com/leichen2018/Ring-GNN/
Assigning node and edge feats::
we have the adjacency matrix in R^{n x n}, the node features in R^{d_n} and edge features R^{d_e}.
Then we build a zero-initialized tensor, say T, in R^{(1 + d_n + d_e) x n x n}. T[0, :, :] is the adjacency matrix.
The diagonal T[1:1+d_n, i, i], i = 0 to n-1, store the node feature of node i.
The off diagonal T[1+d_n:, i, j] store edge features of edge(i, j).
"""
zero_adj = torch.zeros_like(adj)
in_dim = g.ndata['feat'].shape[1]
# use node feats to prepare adj
adj_node_feat = torch.stack([zero_adj for j in range(in_dim)])
adj_node_feat = torch.cat([adj.unsqueeze(0), adj_node_feat], dim=0)
for node, node_feat in enumerate(g.ndata['feat']):
adj_node_feat[1:, node, node] = node_feat
x_node_feat = adj_node_feat.unsqueeze(0)
return x_node_feat, labels
def _sym_normalize_adj(self, adj):
deg = torch.sum(adj, dim = 0)#.squeeze()
deg_inv = torch.where(deg>0, 1./torch.sqrt(deg), torch.zeros(deg.size()))
deg_inv = torch.diag(deg_inv)
return torch.mm(deg_inv, torch.mm(adj, deg_inv))
def _add_self_loops(self):
# function for adding self loops
# this function will be called only if self_loop flag is True
for split_num in range(10):
self.train[split_num].graph_lists = [self_loop(g) for g in self.train[split_num].graph_lists]
self.val[split_num].graph_lists = [self_loop(g) for g in self.val[split_num].graph_lists]
self.test[split_num].graph_lists = [self_loop(g) for g in self.test[split_num].graph_lists]
for split_num in range(10):
self.train[split_num] = DGLFormDataset(self.train[split_num].graph_lists, self.train[split_num].graph_labels)
self.val[split_num] = DGLFormDataset(self.val[split_num].graph_lists, self.val[split_num].graph_labels)
self.test[split_num] = DGLFormDataset(self.test[split_num].graph_lists, self.test[split_num].graph_labels)