-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTriangulation.py
376 lines (329 loc) · 13.3 KB
/
Triangulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from random import shuffle
from TriangleSet import TriangleSet
from tools import own_det_3 as det
from generators import gen_a as generate_random_points
from visualiser import Visualiser, FakeVisualiser
from typing import List, Tuple
from functools import reduce
from math import sqrt
import numpy as np
from plots import Plot, Scene, LinesCollection as LC
OVERLAPING_METHOD = 1
SWAPING_METHOD = 2
delta = 1e-5
class Triangulation:
def __init__(self, points: List[Tuple[float, float]], method=SWAPING_METHOD, visualiser=FakeVisualiser()):
self.points: List[Tuple[float, float]] = list(points)
self.triangle_set = TriangleSet()
self.idx = 0
self.visualiser = visualiser
self.visualiser.set_triangulator(self)
self.method = method
def triangulate(self):
points = self.points
n = len(points)
if n < 3:
return None
if n == 3:
return [(0, 1, 2)]
p0, p1, p2 = self.make_starting_points()
points.extend([p0, p1, p2])
self.add_triangle(n, n + 1, n + 2)
self.visualiser.draw_clear_triangulation()
for point in points:
if self.idx == n:
break
self.add_point_to_triangulation(point)
self.visualiser.draw_clear_triangulation()
self.visualiser.draw_result_triangulation()
return self.get_result_triangulation()
def make_starting_points(self):
ps = self.points
left = reduce(lambda a, b: a if a[0] < b[0] else b, ps)[0]
right = reduce(lambda a, b: a if a[0] > b[0] else b, ps)[0]
bot = reduce(lambda a, b: a if a[1] < b[1] else b, ps)[1]
top = reduce(lambda a, b: a if a[1] > b[1] else b, ps)[1]
width = right - left
height = top - bot
self.visualiser.set_boundaries(
left - 0.25 * width, right + 0.25 * width, bot - 0.25 * height, top + 0.25 * height)
p0 = (left + width / 2, top + 10 * width)
p1 = (right + 40 * height, bot - height * 5)
p2 = (left - 40 * height, bot - height * 5)
return p0, p1, p2
def find_in_triangle(self, point):
self.visualiser.reset_path()
i0, i1, i2 = self.triangle_set.get_first()
self.visualiser.add_to_path((i0, i1, i2))
self.visualiser.draw_with_path()
while not self.is_point_in_triangle(point, i0, i1, i2):
i0, i1, i2 = self.find_next_in_triangle(point, i0, i1, i2)
self.visualiser.add_to_path((i0, i1, i2))
self.visualiser.draw_with_path()
return i0, i1, i2
def is_point_in_triangle(self, point, i0, i1, i2):
p0 = self.points[i0]
p1 = self.points[i1]
p2 = self.points[i2]
return Triangulation.in_triangle(point, p0, p1, p2)
@staticmethod
def in_triangle(point, p0, p1, p2):
d0 = det(p0, p1, point)
d1 = det(p1, p2, point)
d2 = det(p2, p0, point)
return d0 <= 0 and d1 <= 0 and d2 <= 0
def find_next_in_triangle(self, point, i0, i1, i2):
tr = (i0, i1, i2)
for i in range(3):
i0, i1 = tr[i], tr[(i+1) % 3]
if self.can_be_next_triangle(i0, i1, point):
rev = (i1, i0)
return (*rev, self.triangle_set[rev])
return -1, -1, -1
def can_be_next_triangle(self, i0, i1, point):
if not (i1, i0) in self.triangle_set:
return False
i2 = self.triangle_set[(i0, i1)]
p0 = self.points[i0]
p1 = self.points[i1]
p2 = self.points[i2]
n01 = self.get_norm_line(p0, p1)
n12 = self.get_norm_line(p1, p2)
n20 = self.get_norm_line(p2, p0)
n201 = (n20[0] - n01[0], n20[1] - n01[1])
n012 = (n01[0] - n12[0], n01[1] - n12[1])
d201 = det(p0, (p0[0] + n201[0], p0[1] + n201[1]), point)
d012 = det(p1, (p1[0] + n012[0], p1[1] + n012[1]), point)
return d201 < delta and d012 > -delta
def get_norm_line(self, p0, p1):
n = (p1[0] - p0[0], p1[1] - p0[1])
l = sqrt(n[0]**2 + n[1]**2)
n = (n[0] / l, n[1] / l)
return n
def add_point_to_triangulation(self, point):
first_triangle = self.find_in_triangle(point)
self.apply_point_in_triangle(point, first_triangle)
self.idx += 1
def apply_point_in_triangle(self, point, triangle):
t = triangle
if self.method == SWAPING_METHOD:
self.apply_swapping_method(t)
elif self.method == OVERLAPING_METHOD:
self.remove_overlaping_triangles(t)
def apply_swapping_method(self, first_triangle):
first_triangles = [first_triangle]
overlapping_edge = self.get_overlapping_edge(first_triangle)
if overlapping_edge is not None:
self.split_to_two_triangles(overlapping_edge)
i0, i1 = overlapping_edge
i2 = self.triangle_set[(i0, self.idx)]
first_neigbours = [(i2, i0), (i1, i2)]
if (self.idx, i0) in self.triangle_set:
i3 = self.triangle_set[(self.idx, i0)]
first_neigbours.extend([(i0, i3), (i3, i1)])
else:
self.merge_into_triangle(first_triangle)
t = first_triangle
first_neigbours = [(t[i], t[(i + 1) % 3]) for i in range(3)]
self.visualiser.draw_with_looking_for_point()
self.swap_bad_neighbours(first_neigbours)
def get_overlapping_edge(self, first_triangle):
point = self.points[self.idx]
t = first_triangle
ps = self.points
for i in range(3):
i0, i1 = t[i], t[(i+1) % 3]
p0, p1 = ps[i0], ps[i1]
if abs(det(p0, p1, point)) < delta:
return i0, i1
return None
def add_triangle(self, i0, i1, i2):
self.triangle_set.add_triangle(i0, i1, i2)
if self.is_not_proper_triangle(i0, i1, i2):
print('Ups...')
def is_not_proper_triangle(self, i0, i1, i2):
p0, p1, p2 = self.points[i0], self.points[i1], self.points[i2]
return abs(det(p0, p1, p2)) < delta
def merge_into_triangle(self, triangle):
t = triangle
self.triangle_set.remove_triangle(*t)
for i in range(3):
i0, i1 = t[i], t[(i+1) % 3]
self.add_triangle(i0, i1, self.idx)
def split_to_two_triangles(self, edge):
i0, i1 = edge
i2 = self.triangle_set[(i0, i1)]
self.triangle_set.remove_triangle(i0, i1, i2)
self.add_triangle(i0, self.idx, i2)
self.add_triangle(i2, self.idx, i1)
if (i1, i0) in self.triangle_set:
i3 = self.triangle_set[(i1, i0)]
self.triangle_set.remove_triangle(i0, i3, i1)
self.add_triangle(i0, i3, self.idx)
self.add_triangle(i3, i1, self.idx)
def swap_bad_neighbours(self, first_neigbours):
stack = first_neigbours
swapped = set()
while stack:
diagonal = stack.pop()
if diagonal in swapped:
continue
swapped.add(diagonal)
new_diagonals = self.swap_diagonal_if_necessary(diagonal)
stack.extend(new_diagonals)
def swap_diagonal_if_necessary(self, diagonal):
d = diagonal
dr = (d[1], d[0])
if d in self.triangle_set and dr in self.triangle_set:
tr0 = (d[0], d[1], self.triangle_set[d])
tr1 = (dr[0], dr[1], self.triangle_set[dr])
self.draw_triangles_with_circle([tr0, tr1])
if self.should_be_swapped(tr0, tr1):
self.swap_diagonals_in_triangles(tr0, tr1)
return [(tr1[1], tr1[2]), (tr1[2], tr1[0])]
return []
def draw_triangles_with_circle(self, triangles):
tr0 = triangles[0]
tr = [self.points[tr0[i]] for i in range(3)]
center, r_sq = self.circumscribed_circle_of_triangle(tr)
self.visualiser.draw_with_triangles_and_circle(
triangles, center, r_sq)
def should_be_swapped(self, tr0, tr1):
if self.is_convex(tr0, tr1):
i_point = tr1[2]
triangle = tr0
return self.is_point_in_circumscribed_circle_of_triangle(i_point, triangle)
return False
def is_point_in_circumscribed_circle_of_triangle(self, i_point, triangle):
if self.is_magical_point(i_point):
return False
point = self.points[i_point]
tr = [self.points[triangle[i]] for i in range(3)]
center, r_sq = self.circumscribed_circle_of_triangle(tr)
return (point[0] - center[0]) ** 2 + (point[1] - center[1]) ** 2 < r_sq
def is_magical_point(self, i_point):
return i_point >= len(self.points) - 2
@ staticmethod
def circumscribed_circle_of_triangle(triangle):
p0 = triangle[0]
p1 = triangle[1]
p2 = triangle[2]
a = np.array([[p2[0] - p0[0], p2[1] - p0[1]],
[p2[0] - p1[0], p2[1] - p1[1]]])
y = np.array([(p2[0] ** 2 + p2[1] ** 2 - p0[0] ** 2 - p0[1] ** 2),
(p2[0] ** 2 + p2[1] ** 2 - p1[0] ** 2 - p1[1] ** 2)])
if np.linalg.det(a) == 0:
return False
a_inv = np.linalg.inv(a)
x = 0.5 * np.dot(a_inv, y)
x, y = x[0], x[1]
r_sq = (x - p0[0]) ** 2 + (y - p0[1]) ** 2
return (x, y), r_sq
def swap_diagonals_in_triangles(self, tr0, tr1):
self.triangle_set.remove_triangle(*tr0)
self.triangle_set.remove_triangle(*tr1)
self.add_triangle(tr0[2], tr0[0], tr1[2])
self.add_triangle(tr1[2], tr1[0], tr0[2])
self.visualiser.draw_with_triangles(
[(tr0[2], tr0[0], tr1[2]), (tr1[2], tr1[0], tr0[2])])
def remove_overlaping_triangles(self, first_triangle):
edges_to_connect = []
stack = []
for i in range(3):
stack.append((first_triangle[i], first_triangle[(i+1) % 3]))
self.triangle_set.remove_triangle(*first_triangle)
while stack:
diagonal = stack.pop()
reversed_diagonal = (diagonal[1], diagonal[0])
if self.should_be_removed(reversed_diagonal):
self.remove_overlaping_triangle(
reversed_diagonal, stack, edges_to_connect)
else:
edges_to_connect.append(diagonal)
self.connect_edges(edges_to_connect)
def remove_overlaping_triangle(self, diagonal, stack, edges_to_connect):
stack.extend(self.get_neighbours(diagonal))
edges_to_connect.extend(self.get_alone_edges(diagonal))
i2 = self.triangle_set[diagonal]
self.triangle_set.remove_triangle(*diagonal, i2)
self.visualiser.draw_with_looking_for_point()
def should_be_removed(self, diagonal):
if diagonal not in self.triangle_set:
return False
i2 = self.triangle_set[diagonal]
triangle = (*diagonal, i2)
self.draw_triangles_with_circle([triangle])
return self.is_point_in_circumscribed_circle_of_triangle(i_point=self.idx, triangle=triangle)
def get_neighbours(self, diagonal):
result = []
if diagonal in self.triangle_set:
i0, i1 = diagonal
i2 = self.triangle_set[diagonal]
if (i2, i1) in self.triangle_set:
result.append((i1, i2))
if (i0, i2) in self.triangle_set:
result.append((i2, i0))
return result
def get_alone_edges(self, diagonal):
result = []
if diagonal in self.triangle_set:
i0, i1 = diagonal
i2 = self.triangle_set[diagonal]
if (i2, i1) not in self.triangle_set:
result.append((i1, i2))
if (i0, i2) not in self.triangle_set:
result.append((i2, i0))
return result
def connect_edges(self, edges_to_connect):
while edges_to_connect:
edge = edges_to_connect.pop()
self.add_triangle(*edge, self.idx)
self.visualiser.draw_with_looking_for_point()
def get_result_triangulation(self):
result = self.triangle_set.get_triangles()
n = self.idx + 1
return list(filter(lambda p: p[2] < n, result))
def is_convex(self, tr0, tr1):
p0 = self.points[tr0[0]]
p1 = self.points[tr0[1]]
p2 = self.points[tr0[2]]
p3 = self.points[tr1[2]]
d0 = det(p2, p1, p3)
d1 = det(p3, p0, p2)
return d0 > 0 and d1 > 0
def is_proper(self):
triangles = self.get_result_triangulation()
for i0, i1, i2 in triangles:
triangle = (i0, i1, i2)
for i in range(self.idx):
if i in [i0, i1, i2]:
continue
if self.is_point_in_circumscribed_circle_of_triangle(i, triangle):
return False
return True
if __name__ == '__main__':
# ps = [
# (0, 0), (1, 1), (2, 0), (4, 2),
# (2, 4), (0, 4), (1.5, 6)
# ]
# ps = generate_random_points(100, -1000, 1000)
ps = []
n = 4
for y in range(n):
for x in range(n):
ps.append((x / n, y / n))
# ps = [
# (0, 0), (2, 2), (1, 1), (4, 4), (3, 3),
# (2, 0)
print('Started')
tr = Triangulation(ps, visualiser=Visualiser(),
method=OVERLAPING_METHOD)
try:
triangles = tr.triangulate()
except Exception as exc:
print(exc)
print("Made")
is_proper = tr.is_proper()
print(is_proper)
plot = tr.visualiser.get_plot()
plot.draw()