diff --git a/environment.yml b/environment.yml new file mode 100644 index 0000000..5d8641e --- /dev/null +++ b/environment.yml @@ -0,0 +1,125 @@ +name: sde +channels: + - conda-forge + - defaults +dependencies: + - _libgcc_mutex=0.1=main + - _openmp_mutex=5.1=1_gnu + - asttokens=2.2.1=pyhd8ed1ab_0 + - backcall=0.2.0=pyh9f0ad1d_0 + - backports=1.0=pyhd8ed1ab_3 + - backports.functools_lru_cache=1.6.5=pyhd8ed1ab_0 + - bzip2=1.0.8=h7b6447c_0 + - ca-certificates=2023.7.22=hbcca054_0 + - comm=0.1.4=pyhd8ed1ab_0 + - debugpy=1.6.7=py311h6a678d5_0 + - decorator=5.1.1=pyhd8ed1ab_0 + - executing=1.2.0=pyhd8ed1ab_0 + - importlib-metadata=6.8.0=pyha770c72_0 + - importlib_metadata=6.8.0=hd8ed1ab_0 + - ipykernel=6.25.1=pyh71e2992_0 + - ipython=8.14.0=pyh41d4057_0 + - jedi=0.19.0=pyhd8ed1ab_0 + - jupyter_client=8.3.0=pyhd8ed1ab_0 + - jupyter_core=5.3.1=py311h38be061_0 + - ld_impl_linux-64=2.38=h1181459_1 + - libffi=3.4.4=h6a678d5_0 + - libgcc-ng=11.2.0=h1234567_1 + - libgomp=11.2.0=h1234567_1 + - libsodium=1.0.18=h36c2ea0_1 + - libstdcxx-ng=11.2.0=h1234567_1 + - libuuid=1.41.5=h5eee18b_0 + - matplotlib-inline=0.1.6=pyhd8ed1ab_0 + - ncurses=6.4=h6a678d5_0 + - nest-asyncio=1.5.6=pyhd8ed1ab_0 + - openssl=3.0.10=h7f8727e_0 + - packaging=23.1=pyhd8ed1ab_0 + - parso=0.8.3=pyhd8ed1ab_0 + - pexpect=4.8.0=pyh1a96a4e_2 + - pickleshare=0.7.5=py_1003 + - pip=23.2.1=py311h06a4308_0 + - platformdirs=3.10.0=pyhd8ed1ab_0 + - prompt-toolkit=3.0.39=pyha770c72_0 + - prompt_toolkit=3.0.39=hd8ed1ab_0 + - psutil=5.9.0=py311h5eee18b_0 + - ptyprocess=0.7.0=pyhd3deb0d_0 + - pure_eval=0.2.2=pyhd8ed1ab_0 + - pygments=2.16.1=pyhd8ed1ab_0 + - python=3.11.4=h955ad1f_0 + - python-dateutil=2.8.2=pyhd8ed1ab_0 + - python_abi=3.11=2_cp311 + - pyzmq=25.1.0=py311h6a678d5_0 + - readline=8.2=h5eee18b_0 + - setuptools=68.0.0=py311h06a4308_0 + - six=1.16.0=pyh6c4a22f_0 + - sqlite=3.41.2=h5eee18b_0 + - stack_data=0.6.2=pyhd8ed1ab_0 + - tk=8.6.12=h1ccaba5_0 + - tornado=6.3.2=py311h5eee18b_0 + - traitlets=5.9.0=pyhd8ed1ab_0 + - typing-extensions=4.7.1=hd8ed1ab_0 + - typing_extensions=4.7.1=pyha770c72_0 + - tzdata=2023c=h04d1e81_0 + - wcwidth=0.2.6=pyhd8ed1ab_0 + - wheel=0.38.4=py311h06a4308_0 + - xz=5.4.2=h5eee18b_0 + - zeromq=4.3.4=h9c3ff4c_1 + - zipp=3.16.2=pyhd8ed1ab_0 + - zlib=1.2.13=h5eee18b_0 + - pip: + - certifi==2023.7.22 + - charset-normalizer==3.2.0 + - cmake==3.27.2 + - contourpy==1.1.0 + - cycler==0.11.0 + - easydict==1.10 + - efficientnet-pytorch==0.7.1 + - filelock==3.12.2 + - fonttools==4.42.0 + - fsspec==2023.6.0 + - huggingface-hub==0.16.4 + - idna==3.4 + - imageio==2.31.1 + - jinja2==3.1.2 + - joblib==1.3.2 + - kiwisolver==1.4.4 + - lit==16.0.6 + - markdown-it-py==3.0.0 + - markupsafe==2.1.3 + - matplotlib==3.7.2 + - mdurl==0.1.2 + - mpmath==1.3.0 + - munch==4.0.0 + - networkx==3.1 + - numpy==1.25.2 + - nvidia-cublas-cu11==11.10.3.66 + - nvidia-cuda-cupti-cu11==11.7.101 + - nvidia-cuda-nvrtc-cu11==11.7.99 + - nvidia-cuda-runtime-cu11==11.7.99 + - nvidia-cudnn-cu11==8.5.0.96 + - nvidia-cufft-cu11==10.9.0.58 + - nvidia-curand-cu11==10.2.10.91 + - nvidia-cusolver-cu11==11.4.0.1 + - nvidia-cusparse-cu11==11.7.4.91 + - nvidia-nccl-cu11==2.14.3 + - nvidia-nvtx-cu11==11.7.91 + - pillow==10.0.0 + - plotly==5.16.0 + - pretrainedmodels==0.7.4 + - pyparsing==3.0.9 + - pyyaml==6.0.1 + - requests==2.31.0 + - rich==13.5.2 + - safetensors==0.3.2 + - scikit-learn==1.3.0 + - scipy==1.11.1 + - segmentation-models-pytorch==0.3.3 + - sympy==1.12 + - tenacity==8.2.3 + - threadpoolctl==3.2.0 + - timm==0.9.2 + - torch==2.0.1 + - torchvision==0.15.2 + - tqdm==4.66.1 + - triton==2.0.0 + - urllib3==2.0.4 diff --git a/gaussian2ring.ipynb b/gaussian2ring.ipynb index a6070d1..6ec2a87 100644 --- a/gaussian2ring.ipynb +++ b/gaussian2ring.ipynb @@ -2,15 +2,29 @@ "cells": [ { "cell_type": "code", - "execution_count": 17, + "execution_count": 1, "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Using device: cuda\n" + "/home/ljb/miniconda3/envs/sde/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" ] + }, + { + "data": { + "text/html": [ + "
Using device: cuda\n",
+       "
\n" + ], + "text/plain": [ + "Using device: cuda\n" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -91,19 +105,18 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'source_sample' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/tmp/ipykernel_2762136/3533583674.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msavefig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 17\u001b[0;31m \u001b[0mplot_source_and_target\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msource_sample\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_sample\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'source_sample' is not defined" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz0AAAHDCAYAAAAOb3Q1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhb1X3//7pXuzSaRdKMZ7eNt/GCsWNsY0MwuwEDSQmEpMk3hCYpaTbS0H7TpE+bpBtf2iahTX4lIQuhJWlYsoGNcSAsBowXHIyx8Yx3z+qZkWbTSBpJV/f+/pAlJI2kkTTSLOa8noeHZ+R7zz3n3CPdz/t+liNpmqYhEAgEAoFAIBAIBOcp8nR3QCAQCAQCgUAgEAhKiRA9AoFAIBAIBAKB4LxGiB6BQCAQCAQCgUBwXiNEj0AgEAgEAoFAIDivEaJHIBAIBAKBQCAQnNcI0SMQCAQCgUAgEAjOa4ToEQgEAoFAIBAIBOc1QvQIBAKBQCAQCASC8xohegQCgUAgEAgEAsF5jRA9AkGBvPTSS0iSxEsvvRT/7JOf/CTz5s2bkuvPmzePT37yk/G/f/aznyFJEm+88caUXP+KK67giiuumJJrCQQCgSAzqb/Hp0+fRpIkfvazn5X82rFnz+nTp+OfzZs3j5tuuqnk14b0z2KBIB1C9Ajy4u233+a2225j7ty5mM1mGhoauPbaa/ne97433V2btbzzzjt885vfTHpgzBRmct8EAoEghiRJOf030wzjXbt28c1vfpOhoaHp7goA//Vf/zUlQqkQZnLfBLMD/XR3QDB72LVrF1deeSXNzc185jOfoba2lo6ODnbv3s1//Md/8MUvfnG6uzjt/OhHP0JV1bzOeeedd/jWt77FFVdckZeXqK2tDVku7XuLbH37/e9/X9JrCwQCQa78z//8T9Lf//3f/81zzz037vOlS5dOZbcmZNeuXXzrW9/ik5/8JJWVlUVrd+7cuQQCAQwGQ17n/dd//RculyspimAi/s//+T985CMfwWQy5dnL/MjUt8svv5xAIIDRaCzp9QWzHyF6BDnzz//8z1RUVLBv375xP859fX1T3h+fz4fNZpvy62Yj3wdMvmiaxtjYGBaLpeQPmIkQDxiBQDBT+PjHP5709+7du3nuuefGfV4Iib+7swVJkjCbzSW9RuwZrNPp0Ol0Jb1WNmRZLvlYBecHIrxNkDMnTpxg+fLlad9G1dTUJP2tKAr/+I//yIIFCzCZTMybN4+vf/3rBIPBpOMkSeKb3/zmuPYy5au8/PLLfO5zn6OmpobGxsb4v2/fvp1NmzZht9spLy9n7dq1/OIXv0hqc8+ePVx//fVUVFRgtVrZtGkTr732Wk5j7+zs5IMf/CA2m42amhr+8i//ctxYIH1Ozy9/+UvWrFkT79uFF17If/zHf8THdfvttwNw5ZVXjgvBiMVF79ixg4svvhiLxcIPf/jDtHMUw+/3c/fdd+N0OikvL+cTn/gEg4ODScfkMu8T9S1dTk9fXx+f+tSnmDNnDmazmYsuuohHHnkk6ZhYrPm///u/89BDD8XXyNq1a9m3b9+4PgkEAkExePjhh7nqqquoqanBZDKxbNkyHnzwwXHHZfvdPXPmDLfcckvSs2DHjh1pQ+cmeuZ885vf5K//+q8BmD9/fvw3dqJw4tjvpsViYd26dbzyyivjjkmX03P27FnuuusuGhsbMZlM1NXV8YEPfCB+vXnz5nH48GFefvnleF9iv/HZnsHpcnpi/P73v2fVqlWYzWaWLVvGr3/966R//+Y3v4kkSePOS20zW98y5fQ88cQTrFmzBovFgsvl4uMf/zhdXV1Jx3zyk5+krKyMrq4uPvjBD1JWVkZ1dTV/9Vd/RSQSyXAHBLMV4ekR5MzcuXN5/fXXOXToECtWrMh67Kc//WkeeeQRbrvtNu6991727NnDfffdx5EjR/jNb35TcB8+97nPUV1dzd///d/j8/mA6I/jn/3Zn7F8+XK+9rWvUVlZyZtvvsmzzz7Ln/7pnwLwwgsvcMMNN7BmzRq+8Y1vIMty/AH4yiuvsG7duozXDAQCXH311bS3t/OlL32J+vp6/ud//ocXXnhhwv4+99xzfPSjH+Xqq6/m/vvvB+DIkSO89tpr3HPPPVx++eV86Utf4j//8z/5+te/Hg+9SAzBaGtr46Mf/Sh33303n/nMZ1iyZEnWa37hC1+gsrKSb37zm7S1tfHggw9y5syZ+IMhV3LpWyKBQIArrriC48eP84UvfIH58+fzxBNP8MlPfpKhoSHuueeepON/8Ytf4PV6ufvuu5EkiX/913/l1ltv5eTJkyX3mAkEgvceDz74IMuXL+eWW25Br9fz9NNP87nPfQ5VVfn85z+fdGy6312fz8dVV11FT08P99xzD7W1tfziF7/gxRdfHHetXJ45t956K0ePHuV///d/+e53v4vL5QKguro64xh+8pOfcPfdd7Nx40a+/OUvc/LkSW655RYcDgdNTU1Zx/+hD32Iw4cP88UvfpF58+bR19fHc889R3t7O/PmzeOBBx7gi1/8ImVlZfzt3/4tAHPmzElqI90zOBPHjh3jjjvu4LOf/Sx33nknDz/8MLfffjvPPvss1157bdZzU8mlb4n87Gc/46677mLt2rXcd9999Pb28h//8R+89tprvPnmm0kvbyORCJs3b2b9+vX8+7//O88//zzf/va3WbBgAX/xF3+RVz8FMxxNIMiR3//+95pOp9N0Op22YcMG7f/+3/+r7dixQwuFQknHHThwQAO0T3/600mf/9Vf/ZUGaC+88EL8M0D7xje+Me5ac+fO1e6888743w8//LAGaJdddpmmKEr886GhIc1ut2vr16/XAoFAUhuqqsb/v2jRIm3z5s3xzzRN0/x+vzZ//nzt2muvzTruBx54QAO0xx9/PP6Zz+fTFi5cqAHaiy++GP/8zjvv1ObOnRv/+5577tHKy8uT+pzKE088Ma6dxHkAtGeffTbtv6WbozVr1iTdk3/913/VAO13v/td/LNc5z1b3zZt2qRt2rQp/ndsnh599NH4Z6FQSNuwYYNWVlamjYyMaJqmaadOndIAzel0agMDA/Fjf/e732mA9vTTT4+7lkAgEOTD5z//eS3VxPH7/eOO27x5s3bBBRckfZbpd/fb3/62Bmi//e1v458FAgGtpaUl6Xcyn2fOv/3bv2mAdurUqQnHFAqFtJqaGm3VqlVaMBiMf/7QQw9pQNLvcex39uGHH9Y0TdMGBwc1QPu3f/u3rNdYvnx5UjsxMj2DE/8tcQyxOfzVr34V/2x4eFirq6vTVq9eHf/sG9/4xrj7lKnNTH178cUXk+Y/Nk8rVqxIsgu2bt2qAdrf//3fxz+78847NUD7h3/4h6Q2V69era1Zs2bctQSzGxHeJsiZa6+9ltdff51bbrmFt956i3/9139l8+bNNDQ08NRTT8WPe+aZZwD4yle+knT+vffeC8C2bdsK7sNnPvOZpNjh5557Dq/Xy9/8zd+Mi+mNeTUOHDjAsWPH+NM//VM8Hg9utxu3243P5+Pqq69m586dWYsPPPPMM9TV1XHbbbfFP7Narfz5n//5hP2trKzE5/Px3HPP5TvUOPPnz2fz5s05H//nf/7nSZ6Sv/iLv0Cv18fvS6l45plnqK2t5aMf/Wj8M4PBwJe+9CVGR0d5+eWXk46/4447qKqqiv/9/ve/H4CTJ0+WtJ8CgeC9SWJOzvDwMG63m02bNnHy5EmGh4eTjk33u/vss8/S0NDALbfcEv/MbDbzmc98Jum4yT5zMvHGG2/Q19fHZz/72aScyk9+8pNUVFRMOHaj0chLL700Ltw5H1Kfwdmor6/nT/7kT+J/x8Kt33zzTc6ePVtwHyYiNk+f+9znkuyCLVu20NLSktYG+exnP5v09/vf/37xLDoPEeFtgrxYu3Ytv/71rwmFQrz11lv85je/4bvf/S633XYbBw4cYNmyZZw5cwZZllm4cGHSubW1tVRWVnLmzJmCrz9//vykv0+cOAGQNdzu2LFjANx5550ZjxkeHk4ywBM5c+YMCxcuHBcaNlGYGURDAR5//HFuuOEGGhoauO666/jwhz/M9ddfP+G5MVLHPBGLFi1K+rusrIy6urqSl50+c+YMixYtGldRLhYOl3rfm5ubk/6Ozf9kHsgCgUCQiddee41vfOMbvP766/j9/qR/Gx4eThIO6X53z5w5w4IFC8Y9C1KfdZN95mQi9hua+htvMBi44IILsp5rMpm4//77uffee5kzZw6XXHIJN910E5/4xCeora3NuQ/5PI/SPTcXL14MRHOO8rluPsTmKd0zuqWlhVdffTXpM7PZPC6ksKqqSjyLzkOE6BEUhNFoZO3ataxdu5bFixdz11138cQTT/CNb3wjfkw++SOpZEogLKR6TuyN2r/927+xatWqtMeUlZXl3W4u1NTUcODAAXbs2MH27dvZvn07Dz/8MJ/4xCfGJfhnYiorBk1l4mamt4Wapk1ZHwQCwXuDEydOcPXVV9PS0sJ3vvMdmpqaMBqNPPPMM3z3u98d53mZzO/udD5zsvHlL3+Zm2++md/+9rfs2LGDv/u7v+O+++7jhRdeYPXq1Tm1UeznUSY7YSY8iwTnH0L0CCbNxRdfDEBPTw8QLXigqirHjh1LSnrv7e1laGiIuXPnxj+rqqoatylbKBSKtzURCxYsAODQoUPj3ralHlNeXs4111yT26ASmDt3LocOHULTtKQf6La2tpzONxqN3Hzzzdx8882oqsrnPvc5fvjDH/J3f/d3ad+ETZZjx45x5ZVXxv8eHR2lp6eHG2+8Mf5ZrvOeT9/mzp3LwYMHUVU1ydvT2toa/3eBQCCYDp5++mmCwSBPPfVUkpc5XRGCTMydO5d33nln3LPg+PHjScfl88zJ9zcWor/xV111VfzzcDjMqVOnuOiiiyZsY8GCBdx7773ce++9HDt2jFWrVvHtb3+bRx99NO/+TMTx48fHzdXRo0cB4lVOY96uoaGhpOIC6SJCcu1bbJ7a2tqS5in2mXgWvXcROT2CnHnxxRfTvoWP5YrEXMkx4/qBBx5IOu473/kOEI2rjbFgwQJ27tyZdNxDDz2U81ue6667Drvdzn333cfY2FjSv8X6umbNGhYsWMC///u/Mzo6Oq6N/v7+rNe48cYb6e7u5sknn4x/5vf7eeihhybsn8fjSfpblmVWrlwJEC95HdtrqFg7cj/00EOEw+H43w8++CCKonDDDTfEP8t13vPp24033sjZs2d57LHH4p8pisL3vvc9ysrK2LRpUyHDEQgEgkkTe5uf+AwbHh7m4YcfzrmNzZs309XVlZTDOjY2xo9+9KOk4/J55uTzG3vxxRdTXV3ND37wA0KhUPzzn/3sZxOe7/f7xz0jFyxYgN1uT9p+wWazFe1Z1N3dnVStdWRkhP/+7/9m1apV8dC2mEBMfB75fL60kRC59u3iiy+mpqaGH/zgB0lj2759O0eOHEmyQQTvLYSnR5AzX/ziF/H7/fzJn/wJLS0thEIhdu3axWOPPca8efO46667ALjooou48847eeihhxgaGmLTpk3s3buXRx55hA9+8INJXohPf/rTfPazn+VDH/oQ1157LW+99RY7duyIl+6ciPLycr773e/y6U9/mrVr1/Knf/qnVFVV8dZbb+H3+3nkkUeQZZkf//jH3HDDDSxfvpy77rqLhoYGurq6ePHFFykvL+fpp5/OeI3PfOYzfP/73+cTn/gE+/fvp66ujv/5n//BarVO2L9Pf/rTDAwMcNVVV9HY2MiZM2f43ve+x6pVq+JesFWrVqHT6bj//vsZHh7GZDLF95IohFAoxNVXX82HP/xh2tra+K//+i8uu+yypOTbXOc9n779+Z//OT/84Q/55Cc/yf79+5k3bx5PPvkkr732Gg888AB2u72g8QgEAsFkue666+Je97vvvpvR0VF+9KMfUVNTk3Nkwd133833v/99PvrRj3LPPfdQV1fHz3/+83iyfMwTkc8zZ82aNQD87d/+LR/5yEcwGAzcfPPNaTfeNhgM/NM//RN33303V111FXfccQenTp3i4YcfnjCn5+jRo/HnwrJly9Dr9fzmN7+ht7eXj3zkI/Hj1qxZw4MPPsg//dM/sXDhQmpqasZ5S3Jl8eLFfOpTn2Lfvn3MmTOHn/70p/T29iYJzeuuu47m5mY+9alP8dd//dfodDp++tOfUl1dTXt7e1J7ufbNYDBw//33c9ddd7Fp0yY++tGPxktWz5s3j7/8y78saDyC84BprBwnmGVs375d+7M/+zOtpaVFKysr04xGo7Zw4ULti1/8otbb25t0bDgc1r71rW9p8+fP1wwGg9bU1KR97Wtf08bGxpKOi0Qi2le/+lXN5XJpVqtV27x5s3b8+PGM5Zj37duXtm9PPfWUtnHjRs1isWjl5eXaunXrtP/93/9NOubNN9/Ubr31Vs3pdGomk0mbO3eu9uEPf1j7wx/+MOHYz5w5o91yyy2a1WrVXC6Xds8992jPPvvshCWrn3zySe26667TampqNKPRqDU3N2t333231tPTk9T+j370I+2CCy7QdDpdUptz587VtmzZkrZPmebo5Zdf1v78z/9cq6qq0srKyrSPfexjmsfjSTo313nP1rfUktWapmm9vb3aXXfdpblcLs1oNGoXXnhhvGRqjFgp1XSlU8lQSlsgEAjyIV3J6qeeekpbuXKlZjabtXnz5mn333+/9tOf/jRtueVMv7snT57UtmzZolksFq26ulq79957tV/96lcaoO3evTvp2FyfOf/4j/+oNTQ0aLIs51S++r/+67+0+fPnayaTSbv44ou1nTt3jvs9Ti1Z7Xa7tc9//vNaS0uLZrPZtIqKCm39+vVJWzFomqadPXtW27Jli2a325PKYGd7BmcqWb1lyxZtx44d2sqVKzWTyaS1tLRoTzzxxLjz9+/fr61fvz7+jPzOd76Tts1MfUstWR3jscce01avXq2ZTCbN4XBoH/vYx7TOzs6kY+68807NZrON61OmUtqC2Y2kaSJrWCAQCAQCgaAQHnjgAf7yL/+Szs5OGhoaprs7AoEgA0L0CAQCgUAgEORAIBBIqmA2NjbG6tWriUQi8SR9gUAwMxE5PQKBQCAQCAQ5cOutt9Lc3MyqVasYHh7m0UcfpbW1lZ///OfT3TWBQDABQvQIBAKBQCAQ5MDmzZv58Y9/zM9//nMikQjLli3jl7/8JXfcccd0d00gEExASUtWRyIR/u7v/o758+djsVhYsGAB//iP/yg2HxQIBALBtCCeS4LJ8OUvf5lDhw4xOjpKIBBg//79QvAIBLOEknp67r//fh588EEeeeQRli9fzhtvvMFdd91FRUUFX/rSl0p5aYFAIBAIxiGeSwKBQPDepKSFDG666SbmzJnDT37yk/hnH/rQh7BYLPHdfwUCgUAgmCrEc0kgEAjem5TU07Nx40Yeeughjh49yuLFi3nrrbd49dVX+c53vpP2+GAwmLR7rqqqDAwM4HQ645t+CQQCgaD0aJqG1+ulvr4eWS5pJPSUku9zCcSzSSAQCGYKk3o2lXIToNgGiJIkaXq9XpMkSfuXf/mXjMfHNoMS/4n/xH/iP/HfzPivo6OjlI+JKSff55KmiWeT+E/8J/4T/820/wp5NpU0vO2Xv/wlf/3Xf82//du/sXz5cg4cOMCXv/xlvvOd73DnnXeOOz71bdrw8DDNzc2cOnWKysrKUnWzaKiqitvtxuVyzYo3o6K/pUX0t7SI/paWoaEh5s+fz9DQEBUVFdPdnaKR73MJxLNpqhH9LR1newb4/n/+lqpKE5JkxDMwgoTEF+75ILV1jpJe+5WXDrLj2TcI+INYrCY237CW92+6cMLzCpnfsz0DfP8/fouGhtNRPqXjnE3rAWZffyfzbCppeNtf//Vf8zd/8zd85CMfAeDCCy/kzJkz3HfffWkfLiaTCZPJNO7zysrKWfNgCYVCVFZWzoqFI/pbWkR/S4vo79RwvoVv5ftcAvFsmmpEf0tHZWUlt956Ba+/foDO9mGsVis3fWADLUsvKPm1b/7g5axZu4wBjxeH0059gyun8wqZ3872QZSQRPO8OciyjNlspf1MH0pYKvl3djatB5h9/Y1RyLOppKLH7/ePm0CdToeqqqW8rEAgEAgEaRHPJcF7nSuuXkVtfRlne3xIEixpaZyya9c3uHIWO5PB4bRjKzPj7h/GVV2Bu38Ym82Mw2kv+bUFM5eSip6bb76Zf/7nf6a5uZnly5fz5ptv8p3vfIc/+7M/K+VlBQKBQCBIi3guCQTQ2dHPju0H8XnHsJWZuemWS7jymtXT3a2iUd/g4qZbLmHrU7tpP9OHzWbmpg9smBLBJZi5lFT0fO973+Pv/u7v+NznPkdfXx/19fXcfffd/P3f/30pLysQCAQCQVrEc0kwG+nucucdFpaJnm4P+/a2oWkazfNqcPcPs/Wp3SxZ2nReiYIrr1nNkqVNRZs3weynpKLHbrfzwAMP8MADD5TyMgKBQCAQ5IR4LglmGy8+/yZbn9qNb7Q4XpkBj5dgIIzLVYEsy7iqK2g/08eAx3veCYOpCqcTzA5mT8aSQCAQCAQCwXuI7i43W5/aHffKaJrG1qd2093lLrhNh9OOyWLA7R6OVu6awfku3V1uDr99mgHPSNHaO3Tw1KTmTzB7KamnRyAQCAQCgUBQGAMeL77RMZrn1RTNK1NX72TtuiXs2H5wRue7xDxcft8YjXMr2LBhlKuufd+k2yuWx0ww+xCiRyAQCAQCgWAGkksVskLyfVauWsDyFYsZHBidkfkuiR6uprk1aFqQbVv30LKsuaC+pnrMztc8JkF2hOgRCAQCgUBQcoqZjD8Tr1dMEvuerQrZZLwXdfVOGhqrSzmMgkn1cFnLrHR2DDPg8cb/PZ/7WgqPmWD2IUSPQCAQCASCkjLVoUWzOZQpXd/v/ert4wz989l7kerh8g4HsdrMtLV2sOvVw3nfV7FvjwBEIQOBQCAQCAQlpBTJ+DPpesUkU98BVqycnyRmYt4LV/W7Vdh8vrG4NyRT+8UsDFAqYvvsSJJER3sfSHDpZcvY9erhgu5rYnvtZ/qQJGlG5jEJSovw9AgEAoFAICgZUx1aNJtCmVJD8GJ9d1aXMzTow2I14XGPpO17vt6LiQoDFBoOWKowwtg+Ox73CDq9QkTR8/vtfyz4vi5Z2gQSgMSSlsYZtxYEpUeIHoFAIBAIBCVjqkOLUq/X2dGPGlEJh5WSXK9Q0oWxLVnaRCAQZP++Y8iyhKpqzJlTmXauYt6LJx/byZHD7ZSXW7ntI5vSGvMTFQYoNByw1GGE9Q0uausc9PX1EVF0Ba+j1H6iXSJEz3sQEd4mEAgEAoGgZEx1aFHi9d46cJJTJ84yMhLg0Uee58Xn3yzJNfMlUxhb79lBzrkj3kWS0rbx7r8n/F/T0h6SGgpnr7DiPxcKV2g44FSHEdbVOwtaR7M53FFQXISnRyAQCAQCQUmJhSpNVTW1K69ZTWVVGQ9+7ymcznIam1wzKtE/Uwhe+5k+LBYja9YuIhyKYDDqMoa3xYx5k8nA0uXNWceXqTCAw2kvOBxwOsIIC1lHsyncUVBahKdHIBAIBAJByalvcI1Lxi8lBoMeWZZpbHLlnOg/VSSKEFVV46FazXNrsJWZCfiDVFbZCPiDGUO48ilkkK4wwJaboyFesb50drhx9w/T2eHOKWws0xhKXREt33U0Xf0UzDyE6BEIBAKBQHDekc3Y7e5yc+jgqWkLccoU8rd6zaKcQ7jyNeavvGY19371dj73xQ/wJx+6jCuuuijel7nz5nDqRA9v7j/OqRM9zJs/Z0JRMVsqos2WfgpKjwhvEwgEAoFAMGlm2magMWM3dWPPtiMdM2IPn0yhWrmGcMULGTy+kyPvnCtkcEf6QgaJ58QKA8To7nJz5nQv8xfUYrWZ8fvGOH2ql+4u94T3MV1fZ9o6gNKHVyaOubbOUdS2BcVDiB6BQCAQCASTYqZuBppq7AJ8+/4nSr6hZ66Gf32DK+2/Z/o8LVrif+kLGWQjNedFddjzynlJ7OtMXQeQ55zmQeqYt9y8nmUX1hf9OoLJI8LbBAKBQCAQFMxMr46VmANSyIaeE9HT7eHM6V56uj0A/OrxnXzzbx/h2/c/wbfvf6JkFePihQzM0UIGJrOhoHkvVs5LqddBT7dnWkMS05FuzNu27pnxm7++VxGeHoFAIBAIBAUzm6pjFXvPoBeff5OtT+/GZpXx+VWcznJeeeltlIiKxWIkokZKVjGuWPOeKQww3/6Wch0cPHCCHdsP4vPOLA9SujF3tPfh9Qamu2uCNAjRIxAIBAKBoGCmevPRyVAsAx8S3vKj4ZpTgeedXl58/gCqquF02QmOhRka9KHT6UoiAIs578XIeSnVOujp9rBvb1vJQxIh/7y0dGO22szY7Zai9ktQHIToEQgEAoFAUDDFFBJTQTYDPx+jN+ktvyRjsZpQIipmk4FgMIzJbGBo0IdBryuJACxk3ru73HjcI+j0CjU1NePam8w9K9U6GPB4CQbCuFwVJfUkFpKPlG7MW26+BIezvGj9EhQPIXoEAoFAIBBMiqnefHSypDPwU43ejZctZ0lLU8bxxN/yu4cpK3cQ8AcxmwxUVpbh848xOOhDr5PZfOO6GbFZZ2x8ft8YjXMr2LBhlKuufd+09SdXHE47JosBt3sYl6s0nsTU3Jx8vEmpY06tjieYOQjRIxAIBAKBYNKUqjrWVJBq9La908GPf/AMtXUOHE572rf+8bf8T+/G3TeM2WLkxpvXcfpUL4MDXvR6HddvWcutt78/63UnKxBymffE8TXNrUHTgmzbuoeWZc1Fv2fFXgd19U7WrlvCju0Hs3qQJjOXk81HShyzqqp5XVswdQjRIxAIBAKBYEaQLfyqGG1nMooTjd5AIMTg0CiRiIqzuhw1omZ863/lNatZ3NJIZ2c3jY31NDRW52x8T2V551Sj3lpmpbNjeEYWm0jHylULWL5iMYMDo2nndbJzOZvy0gSFI0SPQCAQCATnOQOeEfp7/Thd5TPWyC1W+FU60TGRUZxo9MqyTMAfwmI1YrGYsFiMSW/9U9uvq3ei00eoqXEC+XteSp2cnzo+V3UF3uEg1llm1NfVO2lorB73eTHmcrblpQkKQ4gegUAgEAjOY176wwFef/0AnWeilaVmSrnfRIoVfhUTNwMeLwaDjs03rmXDpcsmNIoTjd4Bzwh6vUxllQ2LxZj01j+deNp01UV5j3eqy3wnjq+jvY/G5gq23HzJrDPq0wnaYs1lsQpcCGYuQvQIBAKBQHCe0t3lZtvWPTgcJprmlt6jUCjFCL+KCaf+/iGGBn0EAiF+/INn6Ory5GQUJxq9ba0d7Hr1cNJbfyCteFrc0oguT2tqOsKpYuOLhQ+2LF1YsmuVgpf+cIBtT+8Z560r5lzmUuAi00uDmDCqcpTlvR4EU4O4LQKBQCAQnKcMeLz4R8eYO78K/6g2YzcOLUb41YDHy4DHy9CgDwmoqrIxOOhj/76jlOVoFMeM3hUr57Ph0mVJb/cPHTyVUTxVz7HmNd7pCqeqb3BNa3WxQj0mA54Rtm3dk9FbV6q5zDV0LkkY2c1svmEl11xX3Jw0weQRokcgEAgEgvMUh9OOtcyMd9iPJJlmbIJ2McKvHE47BoOOQCBEVZWNYDCMxWJEJ0usW9/CwbdO5mUUp771z+5RiOQ95kLKO8/mMKt8PSaJY/R6A/hHx2iam95bd+U1q6msKqP9TB/Nc2tYvWZRUfqcS+jcOGHkHmbf3jaWr1icNgdJMH0I0SMQCAQCwXlKfYOLLTet5/XXD9DR3ofVOnMTtCcbflXf4GLzjWv58Q+eYXDQh8VipKrKTpXDzrXXr+Ha69dMSjBk8ijU1TtpPXK8oEIR+ZR3nspqb8WmII9JQs6U3W7BmsVbl3re0OBoUeYml9C5ccLIVcHY2CgDHq8QPTMMIXoEAoFAIDiPueLqVdTWlxFR9DO6ehtMPvzqQx++HIAdz+xDUSJUOexJIm+yY0/nnXnhuT+WvFDEVFd7KzaZPCZtrR3xuYTMOVMOZzlbblrPtqf3jPPWlXJucgmdGyeM3MM4XTPPmyoQokcgEAgEgvMeh7OcmpqowXm+86EPXz4uH6eYJHpnpqpQxFRXeys2MWHQ2eHGajXh9wcJ+EM8+dhOIoqKrczMyosuyJozdcXVq2hZ1lyy6m2ZmCgMcZwwKjOzdn0LdfXOSV9bUFyE6BEIBAKBQFASpisHJZ+wsVzINI6pKhQx2zfPrG9w4XSV8+LzB1AiKgaDDpvNgtNlx9UYHc/ePa3odHLWnKl093Uq5mai9ZQojKLV2/LP8RKUHiF6BAKBQCAQFJ3ZnIOSSLZxTFWhiNm+eeavHt/JKy+9japqmE0GLBYjo6MBLFZTkndmw8Zl4wpO1NU7s4Y7zpS5iQkjVVUz9jcmnsNhBYNBPysLUsxmhOgRCAQCgUBQVKYrB6XYnqWJxjGVhSIKqfY2E+juckdzrCIqTpedYDBMMBRGVVV6zw5hs5njYjFWcKKttQOQWNLSmNM1ZsPcxMRzZ4ebkWEfFZU2Ghpds/ZlwGxEiB6BQCAQCARFZTpyUErhWcplHBMViiimECt22F42itXvqGcjgsViJDgWxmQ24PeHcDjtmIz6cd6Z1Pu45eb1LLuwfsLrTHZuchlvoXMSE8+BQJBAIIiGFs1rCoSyvgyYzSXKZyJC9AgEAoFAICgqU52DUirPUq7jSFcoorvLzXPP7mfvntZ4sv5seatfTAHpcNpxOO1E1AhDgz6GBn3odTIf+diVXLIxueBEuvu4beseauuvpqamdJt95jLeycxJTDyXlVuIKCrl5VZ8viBWq4nR0UDalwHnS3joTOL8L+MiEAgEAoFgSonlWUiSRPuZPiRJKmmeRcyodFVXxD0yPt8YAx7vpNotdBwvPv8m//zNn/Pz//4DJ473oDfo0DSNrU/tprvLPak+lZpE4eGsLmdk2MeTj+8suN+xOayursTpKmfe/Dl8+rNbuPX2y6lvcLFi5fxxldgS76PfN4bXGyjmEJNIFVrp7lMux2QjJp79vjF0epmRET86nYzfH0wroid7PUF6hKdHIBAIBAJB0ZnKPItSepbyHUfMYA2GFCRJQkLj9MmzXPS+BXjcIyUN8StGOFRMeOgNOk4c7yEcVlDCEX71+CtcefWqgtrOdQ7T3UerzYzdbina+FLJJYRxsuGaicUWLFYT4ZCC1WrGYjGmFdGzvUT5TEWIHoFAIBAIBCVhqnJQSl3BK59xxAxW0KL5G5oGwNHWTprn1qQVYsUw5osVDuVw2tHpZY4f68Zo1KHXy4wFQjz9u9f54/5jOBz2gtrOZQ7T3cctN1+Cw1nOS384wLan9xQ93CsXwVwMUZ0o/Caq3jbbS5TPVEouerq6uvjqV7/K9u3b8fv9LFy4kIcffpiLL7641JcWCAQCgWAc4rl0fjJTKnjFRMPp072YLUYC/iCqqjE87GPjZStKkrtRzJym+gYX69a3cKytC0WRkCUJg0GPqmk4neWoqlrSSnyp97G2zkHrkeNs27qnJNUAcxHMxRLVuYrnmVKG+3yjpKJncHCQSy+9lCuvvJLt27dTXV3NsWPHqKqqKuVlBQKBQCBIi3gund9MZXWzbH2IiQa9QUdFhY3q6gokeXwJ5mKJlWKHQ117/Rr27m4lGFIwmw20tXZisRixWE1YLMaSh1rF7mN3l5vDb5+m52w//tExmuYmj6+ttaMoIjcXwTzVojrX64kKb7lTUtFz//3309TUxMMPPxz/bP78+aW8pEAgEAgEGRHPpdnPbDDyEkXDnNpKAv4gkiSNC09qa+2kr3coLlYsVhPtp6PGfOLYJhpzscOh6htc3HbH5Wx9ajcDA170OpmqKjsWi3HKQq1iHjC/b4w5dTYCgVDS+AL+EE8+tjNtZbxC1kiu4XdTueYmup6o8JYfJRU9Tz31FJs3b+b222/n5ZdfpqGhgc997nN85jOfSXt8MBgkGAzG/x4ZGQFAVVVUVS1lV4uCqqpomjYr+gqiv6VG9Le0iP6WltnSz3zJ97kE4tk01WTr70t/OMC2rXvwj45hLTOz5ab1XHH1qqnvZALp+ltb5+Cqa1fx++1v0NPtocph59LLluFxj6BpGnX1Tl76wwF+/cQr9PUO4nYP43DYGRjwokZUfvX4TjRV44qrV+U05to6B1tuXs+2rXuim6Sey4WprXOMm8dc18Omqy5icUsjAx4vR9s62PXaOxO2XSx6uj1sfXo3GhpNc2vQtCCSpBEKhulo70Mny0iShslswOWqwO0eZuvTu1nc0kjbkY6C1khPtyculOrqnQX3faq+b4lz1DyvJmkO8un/bPx9KJSSip6TJ0/y4IMP8pWvfIWvf/3r7Nu3jy996UsYjUbuvPPOccffd999fOtb3xr3eX9/P6FQqJRdLQqqqjI8PIymaUm1+mcqor+lRfS3tIj+lpbh4eHp7kJJyPe5BOLZNNVk6u+AZ4TXXz+Aw2Fi7vwqvMN+Xn/9ALX1ZTic5dPa387OHs6c7qW83IrDWc7BAydobT2Bw2VGp5OpqCzjj/vfYd+eQ5SVW1i6rJkj77RT12DHVbOI7i43wWCYxuYKGhpdGPQ6Xn/9ACYLOY952YX11NZfjdcbwG634HCW09fXB0TnLvZ5ZVVZzutBp4fqOVaq5yxh6fK6tG2Xgs7OXmxWGdecCmRJxmQ2EAyFuezyC6mosDE87OPVl96O/3tZuQN33zCHDx9j357WvNfIwQMn2Le3jWAgjMliYO26JaxctSDj8YnzmdruVH3fUucoNgednd3o9JGc25ltvw+TeTaVVPSoqsrFF1/Mv/zLvwCwevVqDh06xA9+8IO0D5evfe1rfOUrX4n/PTIyQlNTE9XV1VRWVpayq0VBVVUkSaK6unpWLBzR39Ii+ltaRH9Li9FonO4ulIR8n0sgnk1TTab+9vf66TwzTNPcGvyjGpJkoqO9j4iiL8nGlbm++X/x+TfZvfstutqHsdjMbLx0GbteewdN03C5Kjl08BQd7W2YzHpsNjOVVTbaTw0SViIsXNSA2SxjMo1xrO0UK1bOw2wqQ1VVOtr7cPflN+Z0n6V6im7cso5lF9bnvR5KuTloKhFFh8+vMnpyAJerAm0oiM+nsnz5IurqnfR0e9jxzFvxf3e7h5EkCb3OnPca6en2sGP7wXP3K9rWju0HWb5iMcC4NTCR522qvm+pcxSbg8bGempq8vP0zKbfh8k8m0oqeurq6li2bFnSZ0uXLuVXv/pV2uNNJhMmk2nc57Isz4obASBJkuhvCRH9LS2iv6VlNvV3NvSxEPJ9LoF4NpWadPkX6frrdJVjtaXs4WI143SVF31cueZKdHe5eWbbXhwOE43N0UIEO555g7ASYdHiBgKBEIMDo0QiKjabGTQYHPBhL9ewWU3xsUQiKmazkUgkGjIZG1vz3DmTGnN3l5ttT0ernjXNjfbvmW17qWu4mjlz5kzLesiUb5P4eUNjNTfdHK1e1tHeR2NzBVtuuoSGxmqApH+PVze7ZQNLWhrznq/BgVF83oQiEK5okYTnd/yRg2+dTFoDS5Y2jZvPbU/voWVZc9JYpuL7lmkOYnOUDzP59yGVyfSxpKLn0ksvpa2tLemzo0ePMnfu3FJeViAQCASCtIjn0swinbjYdNVFaY+dqjK++VRUG/B48Y+OMXd+Ff5RDVd1BYODoxj0Otz9w8iyTCisoNfLRJQIVpuZoUEftbVVbL5xLbtePRwfy403r+P0qd6ksa1es4ihwdGCx5yuqltHex9eb2DcmKeiOEQmMZnp8yVLm/C4R9DpFVqWLkxqK1N1s3zXSLoiEDqdzN7drZjMhqQ1gCTNqE1DZ0qZ9tlCSUXPX/7lX7Jx40b+5V/+hQ9/+MPs3buXhx56iIceeqiUlxUIBAKBIC3iuTRzyCQuFrc0ostgnUyFkZdP+WeH0461zIx32I8kRT03DoedjZctZ9erhxnwjGA06Cm3WwmFw7j7R9AbdGy+cR0f+vD72XDpsqSxpBMfkxlzOoPeajNjt1vix0xVBbBM97uyqownH99JKBimpraKgD+YJDJr6xwZ84fSVTfLd77Siel1lyzl9VcP46quSFoDoM24TUNnQpn22UJJRc/atWv5zW9+w9e+9jX+4R/+gfnz5/PAAw/wsY99rJSXFQgEAoEgLeK5NHPIJi6q51gznldsIy9VaORT/rm+wcWWm9bz+usHopXNrFHPwpVXr4oLmrbWDp76zet0dfaDBC5nOQ5HWdqxZBpboWNOZ9BvufmSePJ9MTc1TSV1XjPd798/+0Z8T6O+vmGamqtRlMikvCf5zleqUIJocYPUNbCkpQk0xKahs5SSih6Am266iZtuuqnUlxEIBAKBICfOl+fSbNivJhvZxUXu1acmQyYvR7YQqdR5v+LqVdTWlxFR9Dhd5fHjYoa3w2nnheffZP4FtWk9GaUm1aBP9JykCpFM+wTlS7p5XbK0KW0Y2bGjXcg6Gb1eRtNUjh/rZsHCuin3nqQKpUxroL7BlZMnqafbw+DA6Kz9fp6PlFz0CAQCgUAgKC7nw6aEqV4InU5m3SVLp+z62bwcmUKkMuUgOZzl1NTUpE2yHvB4iSgq8xfUIcsyNpu5qHkgkxG/icIzFFQ4frwbNaLy5GM7QaOgNZVtXjOFkS1cWE9HRz/hsIIaUePr4NDBU1Q5yjKGO5aSbGFyE3mSDh44wY7tB/F5Z+/383xEiB6BQCAQCGYRpQxJmmpihuVzz+5n7+5WXn/1MAffOsHmG1ZyzXWlLZE8Ue5OqmFbSA4STOTRmhy5iN/UY7bcvJ5lF9YD7wrPJx/bGfe4LG5pxGjU57Sm0gmubPOaKYxM0zRWrJxH79khTEY9ZWVmvn3/E9E+281Tsh7SjaeQsMKebg/79radF9/P842ZX5tOIBAIBAJBnJhRmZhk7fONMeDxFu0a3V1uDh08RXeXu2htZuPgWyfjlbI0TWPf3jZ6uj0lvWaiGImVic4mRgqd95iwkCSJ9jN9SJJUlDyQVBGmaRpbn9qddM/SHbNt6x4GPCPxY668ZjW3fWQTc2qrWLN2EY1N1TmN7cXn3+Tb9z/B9x/4Ld++/wlefP5NYOJ5rW9wsWLl/LigiM2Nxz1CRYWVq659H7tePZzU56lYD5nGky8DHi/BQBiXa+J1MtXfs/c6wtMjEAgEAsEsopSeA0j2DOj0MuvWt3Dt9WtK9pZ6nGfAVcHY2CgDHm9Be45kI/VNfrq8DYiGVaWGNGUqbdzfP4ROr2TdvLPQCmzZQtdyqTI34PEyMODF6SwnEAhlLFm9pKWRmjmVBPxBbOf2ucm2pibyNuYzr6lzM+Dx8tyzb6RdD5IklSSPrZjeU4fTjsliwO0ejm4ammEuf/X4TnY8s4+wEsHhsIsQuClAiB6BQCAQCGYRpdyvJtH40xt0HD/WzbG2LvbubuW2Oy4viVE2Tky4h3G6il8GONteMDFDuu1Ix7thVSnhYqnzHvAHQZJ44n9fpnFuBRs2jHLVte/LeP18Q6UmCl3LRfy2tXZwtnuAznY3FquRqsoyXHMq4iWrE0VVPmsqneA6drSLfXvaWLt+vJDJNq/p5ibdejja1sGun7xTkjy2fMqUT0RdvZO165awY/vBjHP5q8d38uMfPIOiqFisRlRFFSFwU4AQPQKBQCAQzDJKtV9NzPhzVpdz4ngPRqMORZEIhpSSGWXjRFyZmbXrW6irdxbcZqqHZKI3+bkcA+/Oe1trJ0/+8mVMZgOu6go0Lci2rXtoWdZcNPH55GM7CYYU5tRWpq34Fs/HeXwnR95pp7zcym13bEqqMrfr1cNUz6lgaNDHWCBEX2iID3xoAw5nOS/94QDbnt6TJCLu/ertOa2pVMHVeqSd/t5hfvvr19j50sG4IMllXtPl0aSuh6XLmnntlXdKlidTbO/pylULWL5icdrqbd1dbnY8sw8lolLlsBEMhhkcGkWnl6dtk9P3CkL0CAQCgUAwCynFpoQx46/v7CDhsIJeL2Mw6JlTW4nHPTIpoyxbqFaiiItW6yq8ZHU6D0l1TWVOoWC5vO2P7TkTiajx/B5rmZXOjuGiGa3PPbufY0e70Ot19PcN0dRUjRLJsHeNlvifFv84Np6Wpc0EAiECgSAe9wiLFjcx4Blh29Y9aUXEipXzJ+xfojA5drSL/t5hauZUsWhxwzhBkm1e2450pPVmpa6Hzs5u/KNv0zR38p6YTKy86AL27m4tmve0rt6ZNjxzwOMlHI5gsRgJjoUxmQ0MDvrQ63XTusnpewFRyEAgEAgEAgHwrjFrNBlQwhFCoQhNzTXxXI9CjbJcksRjCe6T9fCkS+4Ph5UJixbkU9gg9VjvsB9rkfKqurvc7N3TiqyTQYZgMExrazuBQIhwWBk/VmBObRUaJBUySOyjxWJEjag4HHYcTjtebwD/JIthXHnNau796u188NZLqa13sGRpY9q2Ms1rOKxkLMSQKJDr6p3Y7RaseRSdyIfY2nz9tXdAgg0bl3HvV2/nyqtXTbrtdDic0XtQWWVDA4YGfeh1MtdvWSu8PCVGiB6BQCAQCARxrrxmNX/7jY/xsU9czYIFdSiKMqmKY7lUGct2bj7VrTJVWDMY9BNWUMunylrisR3tfSDBlpsvKYrRGtvXx+GwMzoSYGTYx6h3jN6eAR595Pm4YBzweOnqdNPZ0c+Rw+10dvTT1emOi41M4ymmiKhvcLF2/RIcDnvWam3p+mEw6NPeq+ee3c+373+Cb9//BN/820f4zZOv4HCWs+Wm9SWvgGcyGTj41slJtZnuGolrODYf1dWVOF3lzJs/h09/dgu33n55Ua8rGI8IbxMIBAKBQJBEfYOLOz+1mWuvXzPpvKFCk8TT5ZxMlLieLTdjxcr5E+ZB5ZMrFTvW4x5Bp1doWbow90mZYAw6nczAgBerzcSodwxJUtHpZQKBUDx0LBxWGB7yoaFRXm5lZMRPOKQkeYPSjUdV1biI2Pb0nkmHc+VSWCNdP7q73OOr4ckye/e04vX6GRr0EQiE+MkPtyPJYT5461W0LGsuah5bMQsYpCNTMYpS5eQJsiNEj0AgEAgEgiQSw4tyyfHIRiFJ4tlyTrIZiBMZ4LnkQeWTK1Xf4KK2zkFfX1/S59nyl3Jpc90lLRw72gWAJElUVEbnymo1MToaYMDjxWDQU15hIxAI4vMFMRoNWK0mDAb9uPbS9eGKq1cVTUTkYsSn9iPdvVq3oYWX/vAWQ4M+JKCqysbQkI8/vnGM9ZdcFM+RSfRmTYZSln/v6fZMWDxDiJ2pRYgegUAgEAgEcSYqlZwv6YzbjZetyGq4xnJOYonrFquJ9tN9tLV2pK34lch0v0Uvxvxde/0a9u5pZdTrx+32EolEMBoN+FNyqxqbXAQCQaw2M37fGBaLKS+DPZPhXYhoK8SIT71XAK/tPEQgEKKqKlrZzGIxEomoDHi8HG3tLOna1Olk1l2ytOD2EpnIizQZYZwPU3Wd2YAQPQKBQCAQCID8NmnMx5hKNG7bWjvY9eohnnv2jYyGa2LOSSiocPx4N2pE5cnHdvL2W6c4c7o3q+E7XW/Ri7XJZX2Di9s+fDlbn9rNWFBhZMiH1WrGYjEmea5iBvuoN1C0/ZomI9qKIZY237iWH//gGQYHfVgsRhwOO2V2y7jCB8UqWx1bm889u5+9u1t5/dXDHDxwYty48x2bw2lHp5c5daKHmtqqpGIgxX6xkImpus5sQYgegUAgEAgEQO45DoUYU7Hzd716eELDNZZz8qvHX+HY0S5knczilkZUVWX71r3MX1A3acO3FG/AM81fW2tH3tdKFIo93R78/iDNc2tYvWZR2mOKMY7JiLZiGdgf+nA0oX/HM/tQlAhVTjtr17fECx+UKv/m4Fsn4/suxcZdWVWGwaA/J9QP5zW2tiMdjHrH6On2cOZ0H3X1Dj756esBSiLeUimWAD+fEKJHIBAIBAIBkDnHIRxWOHTwFOGwwtDQKE8+vhOTyZC3NyifxPErrl6FJMv89KHtNM+rwW634nYPEworWK2mSRm+pXoDnm7+Av4QTz62k4iipr1WNvFV3+Ci7UgHzz6zL97XocHRpPOL6dUqNLE/0cB2VpfTd3aQJx/fWbCB/aEPX86GS5cl7dsUUXQly79JN+6DB07y4PeeIhyOcLZngJqaSpYsa8pJPMRy0pwuO43NLnrPDmEy6lnS0ljy4gnZxlSK68wmhOgRCAQCgUAApM+/mTu/lkcfeZ7ODjcjwz7MZiM+3xiLWxrz9gYtWdqUl+G6pKWRmjmV8dAgv28Mo0GP3x8suNRyKd+Aj8sRkWVAw2Qy4GqsGHeticTXVLytTxRdhSb2xwxsvUHHieM9hMMKSjjCc8/u585PbS6oXzExp6oqfX191NU7J6wSVyip4+7scDM85MPhtFNeaaOz083g0CiBQCgn8ZCak2azmePnlLJ4QrYxleo6swkhegQCgUAgmGWUMjk5MWQqHFZ49JHnCQSCBAJBNDRCoTBIcLStEzRQNW2cMZXNWE81XC99//KMRQ3SibAbbl7PmVNnCzZ8S/0GPHH++vuHeeznLybtRRO7Fkwc5jSVJZWjSfwtbLxsObtePZzX/MbyV44f68Zo1KHXy6iqxt7drVx7/ZqirdFSFalIXWdqRKWiwkZjUzWBQAiLxUggECLgD+IbDUwoHhJz0lIFRy4lvksxplJdZzYhRI9AIBAIBLOIqUhOjr1lP3TwFL7RMcrKLUQUlfJyKz5fEHuZhd7eQQ69fRqLxciNN69LMqayGeupRQ1ee+Uwv9++Pz6WTVddlNSXTHu85GP4FsObUcj8pduLJnatXARNOg+EGlGT9uIplMSSynq9jqNtnRw50s4FF9Rxw03rWNLSlPP81je4aFnazJF32tE0DbPZyMJFtSiKUlA+00TXKoXhnk7sx+a9sspGOKQw4BmhymGfUDwk7oN07GgXBr2OzTe++x0ppnibyZUMZxpC9AgEAoFAMEuY6uTkmNHt942h08uMjPjRyTLe0QBWm5nFS6LFBU6f6qW7y53RWE8VFtmKGixuaUSXYp2k2+Ml1/GmE4m5vgGfrEdtorftE4mvxPMPHjjJ8JCPigobjz7y/LjcnnyJiS5ndTmHD52JevI0jdOne3nqN69z378vy2uOW4+0I0sSakSluqYSo1GHd8SfNZ9pppG4roYGR+P3rbq6kg/8yWUsaWnMeS1ccfUqBgdH2fHMPsJKhF2vHsLhKIuPvxjiLZcXILlep6fbw+DA6HktjoToEQgEAoFgljDVycmJRrfFaiIcUjCaDITDERa3NNLYVI2qquP6kEtoTbaxVM+xFqX/mUTivV+9fcI34MXyqGV6255r+NGV16ymsqqMB7/3FA6nncam6qKI3Zgw7Wzvxzc6hiRL6PU6TCY9Pd2e+J5IExGbY5PJQMuyZo4f66b9dC/N82rIls9UzBDNUoR7TtZL0tPtYderhymzW5IqwhXrBUUxX4AcPHCCHdsP4vOe36WthegRCAQCgWCWMB3JyalhP0NDozz52E6MRn3WYgKZjMaYgRoOK1nGEknbl3TGbTaDN5uwWrFyfkbjsNgetUxv23M1rA0GPbIs09hUXTSxGysM8LOf/h5N05CRKCszI8sSYSKAlFM7qXNcUWmj/Uwf77/8Ql5/7Z20+UxtRzqKFqJZynDPyXhj8n1Bka9wK9YLkJ5uD/v2tr0nSlsL0SMQCAQCwSxhupKTxxl/Gjn1IfW8VAN17rw5nDndm9ROXb2Tvr6+cW2lS7ovs1uy7p8y2WpkU+FRy8WwLpXYjXmR7vvHXzA46ENVNRRFpa7ewZKWxpzaSOybxWqi7+wg5eVWVq66gINvnUxb/jyToATyztWaSXvRdHe58bhH0OkVHM6qnO9ZIcKtWGtiwOMlGAjjco0Xp0L0CAQCgUAgmDZmQnJyIX1IZ6CeOd3Lx++8BoNBH29HVdWs5+r1Oo4f76attQNZlqmtr6JlaXNag7dQkTjTyv3mOo5CwrxWr1nEX3zhFp58fCcjI37Ky63cdsemnM+P9e1nP9lBT/cAAHUNToYGR9P2OdMmo889u5+Db53My/CfSXvRxISL3zdG49wKNmxYlfM9K0S4FesFiMNpx2Qx4HYP43JlXuulrBg5VQjRIxAIBALBLKNUFazSkcnYybcPmQxUg0HPipXzczrXWV3OieM9GI061IiKokQYGvRl3T8l5s1oP9NH89waVq9ZNGFfCzUop6qUeLr2C/EWxPq7ZGkTf/uNjxXc9yVLmygrs9A8bw5zaqP7KmXKnUpX0U4ny+zd05p2w9vaOkfG6xZLnE72viUKl6a5NWhakG1b93Dv/504d2wywq0YL0Dq6p2sXbeEHdsPZlzrU1ExcioQokcgEAgEAkFaimnsTMZAjZ3be3aIcEhBb5AxmvQYjDrGAiECgfT7p3R3uXnu2f3s3dMaryCWa9WzfA3Kl/5wgG1P75mSUuKpFOItKGZ/BzxeIhGVCxbUjtuMMzV3Kp2gXLehhddffQdX4/gQq0TRkypOiuHtKMYaTxUu1jIrJ4+72benjbXrl2QV9TPBq7hy1QKWr1ictnrbTAshnAxC9AgEAoFAIBhHKZL5JzJQE3Miampqxp375GM7UZQIqqaxcFE93mE/fX1DeNwjOFL2T3nx+Td58rGdHDvahayTWbioHk3T8hpDrt6sAc8I27buyWmuSuENSjS6A4EQsk7G4x7J6C3Ip7+5kK/hniooAQ4eGJ//k3h+JpE2GW9HsdZ46vi72gfp6R7gt796jZ0vHcwqpCYj3Ir5UqKu3klDY/W4z2dSCOFkEaJHIBAIBALBOEph7CxZ2nSuKJjEkpbGtCE07+ZEjHLVte+L/3vMuI15bhQlgqumgg98aCOLlyRvpBkzZoMhBb1eh94g09Hez4qV87KKgVxIJ1q83gD+0TGa5mafq1KFCcWM7tYj7fFwP71Opq21I62XIdf+5kohhntMUMbmc+Nly9n16uFx56uqGhdpgUCIMrsF/7nwuZg4KTTcM9c1/ub+Y2nDIxPXQmz8J451YTBqVFaV4XSVj+trOoqVI1cKD8xM8EQVCyF6BAKBQCA4TyimF6HYxk6qwY92yTiRkpoT0bKseVxo1J2f2sy116/JKU9iTm0l/X1DaJpKOKxEK4tV2Io2ho2XLWfxkkYUJYI1zVyFwwqHDp6KXy8fIzWfe1nf4GLjZcv58Q+eQYmoWCxGqqrs7Hr1MBsuHb/JqN1uSdvfyRiyhRju6ebT4SwHtKTqcV5vgO5ONz5fkIiiotPLWK2mSXsbclnj//mdX7N9615CIQWjUc8NN63jS1+5Na2Avfert7NvTysv/GEvvm4vRw6359zXYuXIFdsDM10VI0uBED0CgUAgEJwHFNuLUAxjJ3FPnmwGf7qciM6O4YwG3EQGYsyYDfiDNDVVc/x4N2pExWgyFGywpb5Zb3ungx//4Bnq6h0sWOxi7tzk8tvz5s/h0Ueej9+PlRddkLORWsi9XNLSRG29A6ezHIvVhMVizNi+w1nOlpvWs+3pPUU1ZHMx3LOtiad+8zpldnNU2JwrS37N5vehKBGGh3yomkZ5uZWRET/hkEI4rEy6v9nW+Jv7j7F96140NJwuOyMjfrZv3cvSZc08+8y+tOu5qbmG4FiYUCiM3T5xXwt9UTGVHpiZUDGyGAjRIxAIBALBLCdbqEu26lcTMRljJ9FwV1WVkRE/K1ddkNbgTzXgvMNBdDqZ/v4hurvcGa+brbJczJhVIhEWLKhj3YYWrt28pmCDLTVvZnBolEhExVFdDhqcOfNu+e1wWOHRR55Puh9797Si08kTGqmFhi05nHYcDjuqGvX0TGQEX3H1KlqWNZfEkM10X1LXxPCwn4tWR9eExWqip/s0dfUOJEmiq8vDsaNd7NvbyobLFlFeYcPvDzIyEkCSJKxWEwbD5M3YbGu8/UwfoZCC02VHlmXKy614PF6OHe3KKGANBj1Wqwmj0YDPF8RoNMT7mjovk3lRUSoPTLGqNc5EhOgRCAQCgWCWky3UZTKiB3I3dhKNJUgO5ers6Gd4yEdnh5vGJtc4gzzRgOto76O8wsDo6BiP/fyljMbgRAZjsd9OJwozWZYJ+ENYrEYsZhP2CgudHcPx8tuHDp5Kez82bFzGwbdOZjVSCw1bmkxeTTHJdF9SxVxnh5uRYR+dHf00NlXTe3aIUFiht3cI3+gYkgQGo55QMMyxtk5crnI8bi/h0CihoAIaGXOW8iXdPHR3uXG7hwEYGvRRWWVjZMSP0aBn0eIGThzvTitgNU3DWV3OyIiCLMtEIiqVlTbaWjuSNtKN5TBNJienmGu8p9vD8zv+yN7drUQi6qwuTZ0JIXoEAoFAIJjlZAp1CYcVDr99elw1tGKTaujGQrmc1eUMDfqoctjxeLwoYSWjQR4z4FqPdLDzxX04nHJ8s8RUYzBXb0gxjfrECnIejxdJhsoqGxaLEe+wH2uCiMt0P669fs2E+UiTCVsqhhE8mbywbPclVcw1NrkY8IyghCO0n+kDNGRJQlEiSBJoQDikUFZuRVU1Fi9tZutvX0dRIlisRpyu8ow5S5Plxeff5Ec/eIazZwcIBcOoKgSDYaxWEzfevJ5rr78YvV6XVmCqqkpNTSWvvXyUYDCaB7RwYd04gfPUb3YRDCosWFQ3qZycYqzxgwdO8NRv3uBo67lKhwvzr3Q4GxCiRyAQCASCGUi+ieypb/ljOSWZqqEVs5+phu7e3a0MD/s4fboXWZZQVY05cyr5iy/egsGgzzim+gYXHvcIqqrhco3fsyV2zmSTuCdV8EECg0GH01mOhExHex+NzRVsufndwgwTeV2K7bFJPb9QI3WyeWHZ7ks6MdfQ6IqHBPb3D/PD/+9pvCN+gmNhQMNoMjA64sfpcgAaqqqi1+uQJInychs+31hREvdTvZQ/+sEztJ/pBSQkWcagl6idU8mnP7uFa6+/GMgsMHu6PfT1DTF/QS0Wqxm/b4xTJ88SViIsWtyALMuEggpdnW5UTWNoaJSFC+sxmvQ5idtilzzv6fawb28boWAYvUGHXi/T0VGcSoczDSF6BAKBQCCYYRRifCYaYYk5JdmqoRWDdIbu8aNdRCJq8oGSxJzaqgmv73DaMVkMuN3DcU9PqjE4GW9IoYZ9TNyZTAaWLm/G3T9MMBjmQx9+P7V1ZbQsXZh0/GS8LtOROJ7JS1NZVZZVqCaS7b6kE3MbL1sRb9vhtNPQ6CIQCBHwjdHV7QENjCYDS5fN5YXfH0Jv0GM06gA4fqybBQvrJp24n7oe5s2v5ezZAUDCbDagKBEiERVJlqmrd07Y3oDHSzAQpqGxGlmWUR12jh3twqDX4e4fxmI1cfx4N3qDnsYmF50dbo62dbJocQO3fWRT1jlO7KtOL7NufQvXXl94nlpif6vnVNHbOxyvdNh7doiKCuu4zX5nczEDIXoEAoFAIJhBTGb/jdhb/tSckomqoU2GdIauXq/DZjOzaEkD4VAEg1GX81vjunona9ctYcf2gxk9HYV6QyYzt5m8GNXVlTic1rTnTMbrMtWJ4+k2OD114iwPfu8pZFnOSSBOdF8SxVw0x+UQzz37Rrzt2LmqqrJoUQPrNrRwzXXvo7Ozm0hEZeHCejo6+gmHFdSIyrpLlk5qjtKth/1720ADSY6G2gGomobZZEgSAJnEczrR7nDY392H6HQfakRlcUsjjU3VzKmtov1MH7d9ZBNXXr0qp77qDTqOH+vmWFsXe3e3ctsdlxecexPrr8c9RlNzNcePRSsdmoz6+L3r7nLH98eKKLM330eIHoFAIBAIZhDF2H8jXTU0a4nK2aYzdK/fspbXXjlMwB8sqJzuylULWL5iMYMDoxnfKhfiDZnM3Gb3LkVyGtdMJnWDU79vjLGxMEajjgsvuiCrQEz0AEx0X2J/p0viv/ert487N1rlbRBrmRlN1Vixch69Z4cwGfVcu3ly4Zrp1sPg4Ciu6nI87hFCIQVN0zAZDdxy68accsoyifYrr17FhkuX0dbawZOP7cRo1KOqKgF/kJqayqR9ibL11VldzonjPRiNOhRFIhhSJpV7k9hfRYmwYGEd6y5ZyrWb3xevMPfkYzs5dvRcvs+i6cn3ia0xvUEruA0hegQCgUAgmEEUY/+N1GpoqTknxSadoVtVZc/JE5MpZKau3klDY3XW6+brDZnM3GbyYtTVO+nr68u5DzOFnm5Pkqisb0je4NRg0KMoKj5fkEAglFEgZvJ4ZLsvmcRnW2vHOc9Z8lpI3FfI4x6hosJalPLM6daDw2Hnplsu4YXn38TjHsFsMnDzn1zKrbe/f8L+x6olZhLt8fWqkbeXMtbXvrODhMMKer2MwaBnTm3lpHNvMvU3Ju6CIQW9XofeINPRPvX5PolrTG+cBaLn//2//8fXvvY17rnnHh544IGpuqxAIBAIBBmZic+mYu2/ERMiHvcIOr0yLuek2KQKkFw8MekM5k1XXVTSPk5mbmNjamvtBLQJ387PVA4eOMGO7QfxeZOFSuIGpwBH2zoZC4QIBIL4RgPjBOJk9hRKFRsBf4gnH9uZMXyqFPsKZVoPMa9MpmvlIp6zifZCvJTx6oGP70QJR1BVjYWLagn4g0XZlDRdf2Pibk5tJf19Q/F8n76zg5RX2EriOU4ldY11dZ8tuK0pET379u3jhz/8IStXrpyKywkEAoFAMCEz+dlUrET2+gYXtXWOafNEZPPEZDKYF7c0otO/e0yxE6cnO7dtRzqShNqWm9ez7ML6ovRtKohV60onVBI3OHVVV1BVWUZfaAiPeyTqAUkRiMXaU0gny4CGyWTA1ZhcpjyXfaYms04yrYdsazebeFZVNe056dootK/PPbufvbtbURQFk0lfFK9XOmLiLuAP0tRUzfHj0Xwfo8lQsmumkrrGnI7ygtsquegZHR3lYx/7GD/60Y/4p3/6p1JfTiAQCASCCZkNz6apTmSfarIZzNVzrLz0hwNse3pPweWTs1Ho3KYTatu27qG2/uqS7oNUTGLVutKVBF+xcn6SMe+qqeADH9rI4iVNBXs8MpEoNvr7h3ns5y/iqo72yWI1nQt364yLnkzrYbJltmH8eshFRF15zWoqq8poP9NH89waVq9ZlNc1C6W+wcWdn9o84X5PxbpWbD0okQgLFtSxbkML126eXMW4fEhdY56BkYLbKrno+fznP8+WLVu45pprZuyDRSAQCATvLcSzqbTkYjRmM5gHPINs27onvrt939lBnnx8Z9awqdRr5tKHfD0E6YRaR3sfXm8g98mZZiYqCZ6PJ6xYewp1d7njayEUUuIVxJ785ctoqkptfVl8PaSW0y60Gl8mchVRqccNDY5OaTWzqXopMh3l0xNJXWN6g1RwWyUVPb/85S/54x//yL59+3I6PhgMEgwG43+PjETVnKqqObsLpxNVVdE0bVb0FUR/S43ob2kR/S0ts6WfhSCeTaWhp9vDgMfL0bYOdr32Dv7RMaxlZrbctJ4r0pTira1zsOXm9WzbuoeO9j50Opm161vQNI2RET8B3xg6vY6Tb/cQDiso4QjPPfsG/+eu68a19dIfDrBt6574NefOncOZM71Z+5B6TqZ+JlLlKMNmN78rGNzDWMvMlJWZZ8VaAJhTW8XFaxfz+x1v09Heh9VmZsvNl1Bb54iPobbOEfewZBtXT7cHV3UFH/vE1fH9durqnXnPRWwt/PrJVzjWFq0StmRpEwajjm3b9nDd9RcS8I3R2JwsNtvP9OL3jdE0N/lzj3skp7C4dOPZ+vRuNM6JKPcwW5+Ohlwm7tGT7bg5tVWz7rd+ov7muh7yIfZ7EVsz2dh01UUsbmmMV2/7/354b0HXLJno6ejo4J577uG5557DbDbndM59993Ht771rXGf9/f3EwqFit3FohMtqziMpmnIsjzd3ZkQ0d/SIvpbWkR/S8vw8PB0d6EkTPWzacAzgtcbwG634HAWHos+GfJde4X0+eCBE+zb28boSADPwAg2m5nG5gr8/iA7X3qD2vqytG0tu7Ce2vqrefOPxznW2smJY6fp7Oxi6fJ6aups9HQP0tAUPU9RVE6dbKf1yPGktgY8I7z++gEcDhNz51fh6R/hncPHmFNbydz5dXiH/bz++oGkPqSek+6YdOj0sPmGlezb28bY2ChOl5m165Yg61T6+vqyzu9MWAsQXQ/N85z82aevYnR0LN6ffPO+Yvc8GAhjshhYu24J1XOsBeePLbuwHkW9mOd3yFTXVGKxmFA1FXf/MKoapqG5Ak0LYi2z4h0O0thcgavGSuPcdz/39EfvyYh3qKB+dHb2YrPKuOZUIEsyZeUO3H3DdHZ2o9NHcjpOksPx79vQ4GjWe564JoBpWR/T8WxKt3ZWrlqQ9RydHqrnWCf1bCqZ6Nm/fz99fX28733v1lCPRCLs3LmT73//+wSDQXQ6XdI5X/va1/jKV74S/3tkZISmpiaqq6uprKwsVVeLhqqqSJJEdXX1rDBqRH9Li+hvaRH9LS1Go3G6u1ASpvLZVIgnoRTks/YK6XNPt4cd2w+iaRqDnlGOHTuLpmro9DqMRh06WWb+Bc1pPTQAEUXHH984g6ZpUe+JZ5gjh7txOqp5/ZXj6A06DAY9Tc019Pb6iCj6pPyZ/l4/nWeGaZpbg39Uw+dTOX60n7LyCiyjGpJkoqO9L+m81HPSHZOJa66rYfmKxfG31HNqq+jv7886vzNlLUBxfosS73nM47Vj+0GWr1g84Vv7bCxfrmPHMwfp6fbicsm43cNIskRzcz1GfTnPbNtLZ8dw3Du1YeNFnO328vvtb+D2tBPwjVFRWcavn9hT0BxHFB0+v8royYH4uCRJorGxnpoaZ47HVSFJEu+83c0z2/biHx1Dp5dZu24J12xeE5+fxDURCIQADYvFNOXrY6qfTZNdO5N5NpVM9Fx99dW8/fbbSZ/dddddtLS08NWvfnXcQwXAZDJhMpnGfS7L8qwwEgAkSRL9LSGiv6VF9Le0zKb+zoY+FsJUPZu6u9xsezqag9A091zC+9N7aFnWPC3FCXJZe4X2eXBgFJ83umni0b5OJCCiqkgRCAY1LBYje/e0ce31F6dtJ3Z+PE/GWcHY2CjLN86j9Z12giGFObWVBPxBjEY9Tld50jicrnKstndzg/y+IAaDHv/oGGqVHXf/MFarOem81HMSjznbMzBh/kJDY3W8vG/MaMw0vzNtLcDkf4vG3TNXtBjC4MDohHsrZaK7y83gwCgbL13OrlcPx3OEttx0CU5XBUuXLWLp8rlJ9+bF599k16vv4PMFGRny4aqu4MKL5sfnuMphj4fd5TLXDY3V3HRzSo7SLRvGjSnbcaqqMjjg5Zlte+Pi//ixbo62drF3dxu33XE5S5Y2xdeEw1XO/n3HAFi2vJmRIR+/euKVKV0fU/lsmuzamUwfSyZ67HY7K1asSPrMZrPhdDrHfS4QCAQCwVQwVc+mQkv5TieF9jlWkKD37BCqqmEw6FCUCLIso2lQX+8kElEztjOuoIF7GKfLzJKWRm6743K2PrUbj3skY5J8umT6G29ex+lTvRmT6zMl4KeWoy5GxbjZuBYmohgb6CaSWhRg42XLWdISrRiXWHI9MXk/VkkvEAhhtZlRNQ2fbyy+kerBAyd58HtPIctyXvcy18T9bMd5vQH8o2M4XOWcON6D0ahDUSSCIYWtT+0GSYqviaFBH7IkEQyFaX2nAyTO5a/t585PbS5oPnMhVsSjylEWLxE/FRR77eTDFA5TIBAIBIL3BtP5YC+UQvsc3zTxsZ0oSgSdXk9ZmQ7t3L4rVpsZi8WYsZ1xAqTMzNr1LfHNEgs1QCeqzLZkaRNIAFJ8k9Fv3/9EUSuBwexcCxMxbp8dncy6S5YW1Fa6MuC7Xj3MhkuXZd33ZsDjpavTjd8fJBRUCAXDqBGVQCCIxz3C8JAPh9NOY1N13vcy18pomY6z2y1Yy8z0nR0kHFbQ62UMBj1zaivxuEcALb4mLFYTYSVCcCyMyWxAr5NRVY29u1u59vrSlIZOEpl2M5tvWMk1101NyfVibb5cCFMqel566aWpvJxAIBAIBBNSimfTdD7YCyWfPqcKiqRNE/e04naPMDLkw263YbEYJxx7omgJhcKElQA93R4aGqsLNkATyyEfOngqSfykehbQLqG6prIkHpnZuBZyIXWjzNdfPczBAyfiHpVcy4EX6gkLhxWGh3xoaJRXWAmFw4SCCme7B7BaTVRU2Ghsqi6pdy3TGB3OcrbctJ5fPfEKSjiCqmosXFRLwB/EZjOzpKUJNOJezKqqMpSwAhpIkszCRbUoilISb+A4kekeZt/eNpavWFxwaGK+TFcZbOHpEQgEAoGgBBTyYJ/MzvLFOD+1zwCHDp4iHFbiuRGZQsBSN01MPCdX0dJ2pIOtT+/GZpXx+VVuunly4WXp9lxZsrQp7d4uH7/zmpJ5ZKZ7r5NScvCtk5jMhvicbX1qNwMDXna9ejinMMFCPWEGg57yChuBQBCfL0hZmQVDlY7bP7KJ5rk1PPrI8yX1rk20n88VV6+iZVlzXBQqioLJpI8L3voGV3xNhMMKP/7BM0n5ayaTviTewHEi0xXNoRvweKdM9MD0bL4sRI9AIBAIBCUinwf7ZHeWL8bO9Il9jrXX2eFmZNhHRaUNp7Oc0dEATld5xhCwQo2Z+BtoNFxzKhg9OTCp8LJ0YVPRfArSehYMBn1BHpmebg+dnb1EFF1Wo3E6jLxSk85Lc+xoFzue2UeZ3ZJTmGChnrBo6JqLQCCI1WbG7xvDYjGxdv0S6htcDA2Olsy7lphPVGa34PcH42NM3B8o9UVAquBNXBO55K8Vg0w5dLM53DJXhOgRCAQCgWCayWSg52rwZzu/kE0a3zXqggQCQTQ0/P4gJlOAnu4BGpuLHzaUZEBL71Z1KrTtTGFTIGX0LKxYOT8vj8yLz7+Z0TM1Wa/bbCCdl8ag1xFWIriqK3JeI4V4whLF0qg3ME4olNK7lphPFFFUdHoZq9XEgMeb9vuWi+CdKm9gthy68x0hegQCgUAgmGYmW+Er2/mFiJ5Ye2XlFiKKSnm5FZ8viL3cRk/3AH1nB7GdK/lcrLChuAHtHo5u9uieXNuZwqaWtDSCltmzkKtHJptnqhRV4GYi6bw0m29cx65XDxVUECNfQ38ioVAq71pSPlG5lZERP+GQQjisTKrdqfIGJs5btHpbZOKTzgOE6BEIBAKBYJrJZKCHw8q4JPx8zs9kaE7khYi15/dFN1YcGfFjNBpQVZW6eidGk6HoYUNxA/rp3bj7ops93nRL4W1nC5tKzKco9K16Js9UW2vHpLx2s410wsPhKCtaaNlE4YPTETaYmk9kNBqwWk0YDLPHrI7Nm6qq8ZLg5zuz5+4IBAKBQHCeks5Anzd/Do8+8nzO3oKVF13A3t2t4wzN1JK/mZL7E43WxP5YrCbCIQWrNVp6+vaPbGJJS2NJwnCuvGY1i1sa6ezsprGxftKJ1dk8AZM1ljN5pkA67/blmYjUuSxWqNavHt/J77fvw+E0EwrLky5sUSwy5RNNV15MMUMpJ2prNodtCtEjEAgEAsEMINFQDIcVHn3k+Zy8BYkiRqeX2bBxWcb9PdLl/vzsJ7+nzG4moqhJ4iq1P6mV2Epl8NTVO9HpI9TUFCfHIFvp6sm2m84ztaSl8bzbl6cQJisqf/X4Tn78g2eIqCp6YzWjXmXaPWaJBn+mfKJM+wqVinwKmEwkWCZqq1jFUvIlsd9WW+HSRYgegSANoYEhFK8Pvd2G0VE53d0RCATvEWKG4qGDp3LyFqQTMQffOsm1169J235q7o/FaqKn+zRz59Uwf0HdOHF1vlQcK5WxlskzdT7uyzOVdHe52fHMPhRFxeG0IQFDgz5kWZfRY1ZqD0S6NXTvV2+fEq9HurF1d7l5/bV3ePo3u7CWTVwpb6LvQE+3J2tY5mSLrRRKar+vuGp5wW0J0SMQpDD0ditDb7xFZCyEzmyk8uKLqLywZbq7JRAI3kPkmqOTbwGE1HZ7zw4BUFNbNaNDsd7cf4z2M300z61h9ZpFeZ1bamMtnWfqfN6XZyoY8HgJKxEsViPBYBiDUc9YIIRBr0vrMSu1ByLbGlqxcn7RrpOOdGMD+NlPfk9HRx/BsTA2mxm9Tqa23pH0/Y2JpXBYmbC640S/JZMttlII6eZ9x7NvFNyeED0CQQKhgSGG3ngLNA2TqwrFO8rQG29hbagVHh+BQDBl5Lp3Sb4FDFLbNRn11NU74jvFp54/E+L3//M7v2b71r2EQgpGo54bblrHl75ya87nT4exBufnvjxThcNpx+GwoyoqQ8OjjI6OodPJbL5x3bg5nQoPRKnWUC75M6lje/LxnQSDYXp7B7GYjYTDEfz+ICdOdKNE1Pj3N1EsqarK8LCfi1ZfkLG640S/JYVuIjsZ0s37iePDBbcnRI9AkIDi9REZC2FyVSHJMnp7GUH3IIrXlyR6RPibQCAoNbl4CwrZ2DG13Vh55dTzpyt+P5E39x9j+9a9KJEIZXYzfn+Q7Vv38v5NF+bs8Uk11jo73KgRddLlhQWlI3Fd6w0yc+bYueHGjdx6+/vHHTsVorYUBn8u3690YzvyTjuBQAhZkiizW5BkieEhHz5fECWscNNHNgEkiaXYBsOdHf00NlWn7X9dvTPrb0mhm8hOhnTzbrGaCm5PiB6BIAG93YbObETxjqK3l6F4R9GZjejttvgxIvxNIBBMFaXa1DCx3XTlm7O9PQemzPvTfqYPn28MWZYZCvqQJImgFqb9TF/OoifRWDt44CTDQz4qKmw8+sjzDA2OzohqYDFmgmdtphBb1x73CDq9QsvShWmPK6YgyTT/xTb4c/VOpRtbebkVk8nAqDdAIBBEliUsVhP1dQ7+4ou3sHrNonE5gY1NLgY8IyjhSNbqjhP9lkx12GbafaBuWMv/98PC2hOiRyBIwOiopPLiixh64y2C7kF0ZiNVF18U9+aI8DeBQDATmWwoVer5md6eP/fsfg6+dXLKvD9WqwlV1VBVBZPJQDAYBiSseb7tvfKa1VRWlfHg9546V264esbtnzMTPGszjfoGF7V1jqz7yBRLkEw0/7E1VGhuWSK5eqfSje22OzaBpvGzn/yenm4PAK7qcq689n3Mqa0C0oulhkYXH7/zmnFVGFOZ6LdkqsM2U4WWqN4mEBSRygtbsDbUpg1fyzX8TSAQCGLMxrf36YwmnSyzd08rJpNhyqo31dU7qXKUMTQ4SjCoIEkSVVV26urzL2dtMOjPvfWunnFFG/LJS5mN66nUTNYDkcv8p4qiyXgJ8/FOZRrbkqVNtLV2cOjgaVrfaef1Vw9z8MCJuFhLJwQnI9Smk0ShNTQ0VHA7QvQIBGkwOirTiphcwt8EAoEgxmx9e5/uDfO6DS28/uo7uBorpkw0OJx2Fi9pZGhwFJ1eR0SJUFlVVlDo0nQkYudKrm/+Z+t6mgom44GYaP5zFaXdXe54OF5NTU3WviZ+v3Q6mXWXLM1rbLG/t/5uNyazIb6mY/0SFQTHI0SPQJCGTIUKJgp/EwgEghjTta9FsUg1mgAOHjg5paIh0Tj0+cawV5UVnEsxHYnYuZKLIJvt62mmkegxm2j+cxGlMUHq943ROLeCDRtGuera92W8fuz79dyz+9m7u3WcpyYXEvsVCISQZZkBz0i8X6KCYDJC9AgEKUxUqCBb+JtAIBDEmK5SycUk1WiaDtFQzDfWM/Xtdy6C7HxYT9NFakhgOo9ZtvmfSBQlCtKmuTVoWpBtW/dQ5bBPmENz8K2TcU9NZ0c///voC1RWleUUihbrV9s7HQwOjRLwh9DrZdpaO4q2f9D5FE4pRI9AkECuhQoyhb8JBAJBjERDyWI10Xt2CJNRXzTPSC7GSK7hNrkyXaIhJr66u9wcOnhqUteeqW+/J5rbmRyeN5NJFTgbL1vOrlcPj/OY3fvV2zPO/0SiNFWQWsusvH2wiwe/9xSyLMevu6SlKantxPN6ugfo7HDj843x4Pee4qMfv2pCj099g4uNly3nxz94hkhExWI1UlllY9erh9lw6bJJr/PpDqcstuASokcgSEAUKhAIBMUiZihFqyydBqCu3kHbkY4pMUbyDbfJlekSDdNtgE0F2eZ2JofnzVTShQTueGYf4XCERUsaxnnMVqycn3E+s4nSVEHq6R9lZMiHw1FOY5OL1iPt/PgHz1Bb78DhsMfXbuy8zo5+OjvchEJhbDYzeoN+wtDFdwVBObV1DpzV5VgsJiwWY9E2Tp3OcMpSfN+F6BEIEhCFCgQCQTFZsrSJMruZufNqqKmtIuAPTtpw6O5y8+TjOwkFwxnbzBRu07KsOemY2RK2Mt0G2ExhpobnzVTShQQODY5iMOgK8phlEqWJgrSjvY/ySgNmi5EqRxmBQIihQR9KRMXpLEdV1aS1e9Mtl/C/j76AzzeGzWZm3vxaauuqsgqXREGg08moqooaUbFYjEXzAE5nOGW27/tkSlbLReyjQDDriRUqQJIIugdBkmZ0oYLQwBD+M12EBoamuysCgSANAx4vEUVl/oI67HYrruoKfL4xBjzegtt87tn9HGvroqvLw6GDpwmFlHFtxgwWV3W00pq9woo/4ZgXn3+Tb9//BN9/4Ld8+/4nePH5Nyc91lLS1tpJX+8QFqspboBNdh5nK/UNrqweiWIQCyPs7nKX7BpTQaIHRlVV3P3DVDnsbL5xLZIk0X6mD0mSiuIxu/Ka1dz71du5ZMNS9DodvtEx9u87RseZPgKBEBaLEYvVhMVqoq93iLbWjvh5f/HFW2hqdFFVVYa93JJVuKQKApPZAEgEg+Gijifd3E1VOGXq71exvu/C0yMQpDBbChVMVHBBIBBMDdk8JsXOw+jucrN3dyuyTkavl9E0lePHulmwsC6pzdTreoeDWM9dN5/yuzPBo/Di82/y5GM76T07SH//MAsX1WM06tNWN5sJ/Z3tnE9hhJlCAq+8ehUbLl1WkvVy8OApHA4Ti1saOXa0m86OfmSdTFWVnUGPl+PHu1EjKk8+thO0qOgZGhxFQ6Kn20NP9wB19Q4++enr0/YrnQfG7w9y2x2XU11dWbTxTGc4Zany14ToEQjSMNMLFeRacEEgEJSWiQzEYhsOAx4vkYjKwoX1dHT0Ew4rqBE1vsdHYpJ/YrhNY3MFW26+hPoGF4cOnsq5/O50G74xgWYyG1i8pJHjx7s52trJoiUN3HbHphnX39nO+RhGmCkksBS5aQMeL/7RMebOr0Kns1BeYaP9TB9r17fQ9k47R9s6kXUyi1saMRqjeTuVVWVsfWo3TpedxmZXvODJkpbGtNfIJAiWtOR+j7q73Oc8TRKLlzSgy6AGprNwSabfTbE5qUDwHkMUXBAIpp+zPQM5GYjFNBxiBo+maaxYOS9uIJWVmfn2/U+MM/qXLG2KV29rWbowqY2Jyu8GAiHK7Bb8RchDKpTUt9oVVTbaT/dx2x2Xc+XVq5L6ez4Z6tPF+VoWu9TFN2JexnBYwVpmxjvsR5JMBPxBamoque3D76ettZOfPrSd5nk12O1WVFWl/Uwf7Wf6kubcZjNnnfNCX6TE+tjW2sFTv3mdnm7PufYc/Okn3s8116Wv7jhdhUtKIbiE6BG854ltRKpGIsg63YwIacu0OWoMUXBBIJh+BgdyNxCLZTgkGjwe9wgVFVYuff9yXntlfAnemNFfW+egr68vbRuZyu92dbrx+4NEFBWdXsZqNU2L4Zsq0AL+IDVzKlnS0hQ/5nw11KcDURY7NxJDKduOdCR5GefOm4N3dIiO9j6s1uTvVs2cSgL+IDabOT63zXNr8p7zfAVBzBM64PHS1eVGUSKUlZkB6O0dYterh1m+YjENjdXFm6QiUGzBJUSP4D1NLC8m6Bki4g+gs1kwnStmMF35Mbnk6sQKLgy98RZB9yA6s3FGF1wQCM5HqhzTYyCmGjwDHi+/374/L6M/m9HU0+3B4x4BCaqqyhgZ8RMOKYTDSknHlY5c3moLQ714iLLYE5NaOW10NIDTVR5/4XDmTC+33r6ecnslTld5UjhdurldvWYRQ4Ojec95roIg0RPqrC7nzOleQiEFfZUeg15HJBLA7w8y4PFmFD2Z8uVmWx6dED2C9yyxvBg1GEINhUDTUIMhIqHwtOXH5JOrM1sKLggE5yu1dY5pMxBTDZ5CjP50RtOLz7/JE798mVBIQdM0BjxerDYzVqsJg2F6TIaJ3mrPJEN9thmB6RBlsTOTGkp58sRZeroHaGyujr9w6GjvQ6/XsfzCechycpHkTHNbyjlP9IQGAiEsVhPBYJiAbwzFqEdVNaxWU8bfi0z5cpPJo5uu74kQPYL3LIrXhzLqR9Lr0JQIssWMFgyhM5mIBMbi+TEThZoVu0/55OrM9IILAsH5zkwwEItl9McMOr1BT0WljbFACJ1eprqmgsrKsmn1nEz0Vnsm3IeX/nCAbU/vOS+KKUxXHsdMJzWUck5tJe2ne+k7OxgPWbPazNjtloxtZNvrZ+KNSN9d27kKh1RPqNNlZywQIhyOEIlo1Dc42Pj+FdTVO9NeN12+XKz4QiF5dNNZdESIHsF7gnTCxd99ltDgMGpYQVMjqIqCzmwiEgzG82Omuiy0yNURCGYfU2UgZjNylixtAglAYklLY0H9STTo9DqZ06d78fnGUMIRVq66gN6zgzP67f90GuoDnhG2bd0jiimc56TLMaurd2I0GeIvHLbcfAkOZ3nRrplOJAA5CYfYb8bGy5az69XDtJ/po7q6kg/8yWU4nGW8W70tkvbamfLlUosv5JpHN91FR4ToEZz3pBMu1oZaRluPYygvQ/EHUPwBNEVB1lvRGQ1UXXxR9NwpLgstcnUEAkE6sr0dTf03tEsKMiAcTjs6nczJE2eZU1tJY1M17v5hDEY9zzy9l18++iIVlTYaGqOepcqqMtrP9NE8t4bVaxalbfN8CPfKBa83gH90jKa5opjC+Uw6r+onP72ZJS2N8XWeWjhkMqQTCU8+Ht3fx2Q2ZBUOqb8LGy9bzpKWpnHfRVVVM/Y3U75cIcUXYPqLjgjRIzivyZQjIwGRsRCWhlrUcBg1GCI4OEL1pWspWzQPo6MS/5muSZeFDntH8Y8poKo5V4YTuToCwexhKoz6VMOns8PN/z76ApVVZcyprSram9O2Ix2Mjgbo6R6g/XQvruoKLBYjRqOeQCCIhobfHyQQCPGf3/0tPl+AiKJiNOq54aZ1fOkrtya1l1gxymDQsfnGtXzow5cXc2pmDHa7BasopjArmOx3Ntu+PxAVEcUinUg48k47aLC0qTmjcEgnlna9epgNly7La8zFLr4w3UVHhOgRnNdkypEBksLI1LEgpqryuOCBwkLNEsPofJ09DBw8hK93ANUXQGe1YHLmVhlupubqTGV+k0Aw03nlpYO89MLhksemJxo+Z7sH6Ozoxzc6xn/8+69YumIeAwNeFi1umNSb05iR5HSV09hcTd/ZQcIhBUmWsdrMRBSV8nIrPl+QcFihv28Qi8WI02VnZMTP9q17ef+mC+Men1h7/f1DDA36CARC/PgHzwCcl8LH4Sxny03r2fb0nmkvpiDITLHySaYqlDKdSCgvt4JGVuFQTI9KMYsvTHfRESF6BOc1mYSLpaEWDbKGkeUbapYYRifJEspYCLXCgho8VxkuFEINhjKGyM10QTHV+U0CwUxnx7NvYDSYSx6bHjN8OjvcdHb0EwqF0elkunsG6Ox0I+tkVEVlybKmgt+cphpJNpuZ40e70Ot1+H1j6PQyIyN+jEYDw0OjaBqUlVuRZZnycisej5f2M32sXrOI7i43+/a0cbZnEK/XjwRUVdkYHPSx45l9eb9tni1ccfUqWpY1vyfC+WYj051Pkg+J3qhUkXDbHZtA04pSxr27yx3fvLimJv3mpFBY8YVMTGfRESF6BOc12YSL0VE5YRhZrqFmqWF0wT43ocEhpAorRFRkixk1MIamqoS9fhSvDyDerr/r7IwWFPmU0hYI3isEfEHqF80peWx67O3o/z76Ar7RMcwWA5qmYjLpURQVm81MX98QOr1MlcNe0JvTdEZSlcMeT4C2WE2EQwpWq5myMjMes5eAP4hBr4uKIYOe5rk174a0DXjp6x0kHI5QM6eCYDCMxWJEUSLndZ6LqHo2cymW9yPX8Liebg+DA6NZj0vXVjpv1L1fvX3ccemEQzaxlPq7ELuO3zdG49wKNmwY5apr35fzPEyG6fqeCNEjOO/JJlxyCSPL5ZhxYXQV5dA/gBoKg05G8Y6iqSpjZ/uR9Ho8+w4Q8Y7GvUKRsRAGu3XGCop8S2kLBO8FLDbTlMWmX3nNaiqrynjwe08RDIbp7x8GwGDQs7ilke4uDx+49VLWrl9SkDGRKezkyqtXseHSZQx4vITDCgaDHofTzpOP7WT71r14PF6MBj033ryeObVVPPrI82iaxqLFDYwFQnS09+PxeLHZzFRV2aly2EWei2BaKEY+Sa7hcQcPnGDH9oP4vJmPS9fWkqVNGb1RK1bOTzo/VTjkIpZioigcVuLXaZpbg6YF2bZ1Dy3Lms9r0S5Ej+A9QalzZFLD6LRQCGNVBYrREN0HKBJBknXIZhM6swnvO8cw1zgxuaoIdJ8l6BlCb7fNWEEhSmkLBOPZfP3FvPTC4SmLTV+9ZhEf/fhVPPn4Tnq6B1BVjYWLagn4gzgc9oIFT4xsCdqp7X7pK7fy/k0XJlVvO3TwVNImiA1NLgKBIDabGZPJULAXSiAoBpPNJ8k1PK6n28O+vW3jK65JsKSlKS4+0rWFRNFLQcfEUqIoUlWV4WE/F62+AFmWsZZZ6ewYPq+9sCBEj0BQFIyOSspaFjL85iGCQ170ZiOOtRdhqa7E6vHieX0/xqoKZKMBNRQmPDSCbDIy1u8hPDSCFgrjP9OJWj8HnUE/4wSFKKUtEIzn/VesZM3aZVMamx4TJs89u5+9u1tRFAWTSV80MZFP2MnqNYuSSlXH3qS3HmnH446Gv+kNOm7+4AbWX7JU5LkIpp3J5JPkGh434PESDIRxuSqQZZlQSOFYWxc/fehZauZUctMtl1BdU5m2LZBKUgo6XQXIkWEfnR39NDZV4x0OYn0PVBuUS9n4fffdx9q1a7Hb7dTU1PDBD36Qtra2Ul5SICgZoYEh/Ge6CA0Mjfu3obdbGW09jjLqQxn2Evb68LadIOgZwrZoHsZKO6gRZIOeSDCIpNcz1uch0HWWyFgIAC0SYazrLIp/bEYKisoLW6j/wGbqbryK+g9spmIG5RwJBLlS7OdSfYOLFSvn5/W2+NDBU3R3uSd1zTs/tZm//ebH+MI9H+Ter97OlVevKri9YlHf4GLjZcvp6vAwNDhKKKSgKBF2vvi2EDyCGUO+39kYieFxqqpmFCQOpx2TxYDbPYzX6+f4sW5knUzzvBq0cwUIwmElbVtLWhq56ZZLkCSJ9jN9SJKUdynodH2LiSJXdVSINTa5qKi0oYQjdLT3gQRbbi5sf6/ZREk9PS+//DKf//znWbt2LYqi8PWvf53rrruOd955B5tt5rzFFggmIlvlsliSfyQURlUiSLKEFomgBkP4jp+CRQuovPgiBnbtJ9B1Fp3Fgn3ZIkbeboWICnodkiShKRHQouJHm+bxZmKmltIWCHJlOp9LxSqXG2O6k+bTJWE7nHYkCcrLLVhsZpSwQk+3h7bWjvPeoBKc3+QaHldX72TtuiXs2H6Q9jN9qBGVxS1N2O1WbDYz7Wf6MBj0Gduqb3AVvRR0unymhkYXH7/zGvR6HTq9QsvShUltno8bC5dU9Dz77LNJf//sZz+jpqaG/fv3c/nl51+dfsH5SWLlMr29DGV4hIFd++OFBmJJ/jqLOV6pTQuGkE1G1JCC4vWhjPqIjI2hjIVAkjCbzRgqy1FGfaBBJBQtay3p9aDTzbhCBgLB+cJ0PZdmSrncYhkymQWchCzLGIx6DHodSlg5d4ZUlP4LBNNJruFxK1ctYPmKxRxt6+LJX76M0agb54FZsXJ+xraKXQo6kyiaU1uFxz0yrq1iv6CZKUxpTs/wcLTajMPhmMrLCgSTQvH6CHv9aGhERvrQVBVNVRk88A5zrtoYT/KPBIOgk1EDY0gGPWowhFxmxnvsJIOv/xE1HEZTVZTRUcJDw+jKyjDYywiPjIISAU2L/vuIFzUYnFGFDASC85Wpei4Vc7PAQnnpDwfY9vSeSRsy2QTckpZG6uod9PYOoSgBVFWjrt7BkpbGEoxIIJh6chUkdfVOGhqrs+6pU2xvbbb2UkVR25EOvn3/E+NKVs+UFzSlYMpEj6qqfPnLX+bSSy9lxYoVaY8JBoMEg8H43yMjI/FzVVWdkn5OBlVV0TRtVvQVRH9zxdfVQ2hwMJp7I0vIegOSTmb02EkqLlqKsaqCijUrGdp/EMlkjIa46XSoqobBWcXosdNEwmG0iApoSJJERFGRwmEkvRnJaEALBJAMenR2G2pgDFWJoCjKlI5VrIfSMhv7e76Ty3MJMj+bero9lJeX53StKkcZNrsZt3sYl6sCt3sYW5mZKkdZ1rnu6fbEjZS6emeOI0tGVVU87mG2bduDxjlDxj3Mr57YiYbGkpamvNpuPdJOf98QTXPfFXAd7X143CMsv3Aed/7Zdfz6yVcYGfFTXm7l1tsvp7bOkfOamo3fFdHf0jHb+7vpqotY3NKY9D3OZyzF+A2IUVvnoLbOQU+3h61P70YjoWT1tj1xUeT3jaX9ftfWTb/TYjLrYMpEz+c//3kOHTrEq6++mvGY++67j29961vjPu/v7ycUCpWye0UhWgJwGE3TkOWS1ogoCqK/6Ql7R1EDQWSLCYCBk6cIV0f3zwFAkjE6KgnJMvqubkzhINRUob9sDXIgiL/7LGPdZ1EjGmNuN4bQGGqZGTTtXISHhKTXI0mgM+rAXEbEpEfS6UBVwWxHMugZ9I3i7+sr2ThTxyuZTfgiYbEeSsRs62/MA3I+k8tzCTI/m37x6LO8//JVrFy1YMJr6fSw+YaV7NvbxtjYKE6XmbXrW9DpI/Rl+J4fPHCCfXvbCAbCmCwG1q5bktO1UlFVFbdnAJtVxlVTgSzJhMIGujuHefaZ13h9ly3ntg8eOMGuVw9jtoDb7cZgcGAw6GhsrkCnV+jr62PZhfXU1t+A1xvAbrfgcJZnHGOm/k72uzLgGUm6fimZbd9t0d/Skq6/Oj1Uz7ECmb/v6SjWb0AqnZ290d+DOdHfA5PZQDAUprOzG7vdQuPcCjQtiLXMinc4mPT9nm4m82yaEtHzhS98ga1bt7Jz504aGzO7uL/2ta/xla98Jf73yMgITU1NVFdXU1lZOQU9nRyqqiJJEtXV1bPmiyn6m8zwoTYC+w/GCxYYXQ4s7mHMkkRoxB/11kgSRmRM1Q7mNNRjrKogNDiMYlBQZQNqjxszOnSVVtzDI+j6BpBlGS0e2w4Y9OiMRmw1tSg+H0FvAGNVBfoKO2FfAFmTqbKVUVZTEz8lNDhMoOssAJaGWoxVFUUdr2w2om+5gJpFi8R6KAGzrb9Go3G6u1BScn0uQeZn08DAGDu2H2T5isU5vYG95roalq9YnNNb255uDzu2H0TTtLhnKJ9rJaKqKoMDXnx+ldGTA1gsJv74xgkAqmtq8LhzG0din0wmG8ePdXP6hIdFixu49cOXJyVC1yT8duXLZL8rL/3hANu27sE/Ooa1zMyWm9ZzRQmr282277bob2kpVn8L/Q3IxTMUUXTx3wOXqwJtKIjPp9LYWE9dvZMNG0bZtnUPnR3DWG1mttx8ybhCB9PFZJ5NJRU9mqbxxS9+kd/85je89NJLzJ8/P+vxJpMJk8k07nNZlmfFQgeQJEn0t4SUsr+hgSGG9x9E0jTMrir83b0E2rtQFRVNUaKeGB2gaiheH5XvW4HZWZVU2Q1NRQmMYWtuAFlCZzYhSRI6kxFNllEVBTSQZBlLbTUGiwkJCMuDqGNjBAMB1LEQOquFgZ27Uf0BKi9sYejtVvpfeI3QYPQNh7GqkuqrNiZVkFO8PvR2W9Y8oMTjgKTxhr2j+E+cxl9Tg16vn7CtmYBYv6VjNvSxEPJ9LkHmZ5PTUU5f7yiDA6PR2P0caGiszunYwYFRfN6EHCBXNAcon2sl9dVVwZYt69n29B7az/QRUcZXlJqo7dQ+lVfYaD/Tx4fu2BQvmZ2uUEIhxRMK/a50d7nZ9vSe+E7z7v5htj1d+p3mZ9N3G0R/S00x+lvIb0CuBQgaGqu56eZoYYOO9j4amyvYctMl8XavuvZ9tCxrLnr1tmIUUpnMnJZU9Hz+85/nF7/4Bb/73e+w2+2cPRt9S11RUYHFYinlpQXvQXI1/DMRq8JmclWhhhUiPj+aBoZyG6GBYTQ1gqzXo8nRgtK+oydx26yMth4HTcPkqiLkGSTiCxAcGMLoqEALK+hNJgxVlRhsFsK+AERUJJ2Mpmn4u84y1ueOfhbUgaZhqKzANrcBxTvK0BtvobdZGdj1BuFhL7LBAGiEEyrI+bvOZiynnUhq2W3L3Kb4eCVZRm+3EXZ76NvxclSoZWlLIJitFPO55BkYwWazlmRDv3QlZnPZpDAbV1y9ipZlzbS1dmasKJVPnwL+IDU1lfEiBekMLmBKq0DNhIIRAkExyPc34M39x/jfR19Ab9DlVIAgVtjA4x5JW7K62EUWsgmyqSqPXVLJ/OCDDzI8PMwVV1xBXV1d/L/HHnuslJcVvAcZeruV7t/toOeZF+j+3Q6G3m7Nu41YFTbFO4oaCkerrxkNmFwOdDYLkqw7V8hAj85iQpJlht88TNjrR28vQ5JljM4qdFYLRFSC7iEkg57K1csx2CxExkIYbBZqrtqIdV4jwbN9jHWfhbCCpNchG/RoERV1bAw1HEZvLyMyFiLUP4DiH0OSQDYakM+5diOBAIFzgicmutA0ht54a9wGqollt2PH+Y6dRJJlFO8omqoS8gyhnqtAl60tgWA2U8znkkRuGwcWQqzEbL6bFObS7pVXr+K2Oy7Pu+1sfUqt+KRpGk8+tpMnH9+Z9NnWp3ZPamPWichlA8libBArEJSafH4DXnz+TR783lOcON5DZ4ebnu4BXNUV+HxjDHi8Wa+x/MJ5Rc17S/f9Svf7EPstePH5N/n2/U/w/Qd+y7fvf4IXn3+zaH1JpeThbQJBqUk16GMeknz3uTE6Kqm8+CKG3ngLxTuKpNOht1qQDAZ0RiNqMIwW0ZAtekzVTnQWM8Gz/UgGPSHPYHRfnmAIk7MS16YNIMsMhseoW3ABytBI3AsVGhoh0N6FzmaLbmIajparlgwGCATjgksdC0bziqod6K3muBjj3NalunNvpZO9NWUE3YPjyl0nerESj7MvmY//TCdB9yCapqIzmTA5KrK2JRDMZor5XPrCPR+kZekFk2oj2xvOXPcEyZWebg+DA6M4nPaC2850XjoPy5HD7QAsXd48ZV6XiTZpPF/3HxGcn+TyPY0JCr1Bj63MTCgU5szpXiKRyKS9w/mS6fuVyQPb1toxpeWxp3SfHoGgFGQy6Asx1isvbMHaUEug6ywjbScYPXaK0NFTIEsYyqN5MAZ7GZqq4jvZjqaqyEYDQfcgkgSSXk/l+1ZQdkEzqqoyeq7SidFRidFRydDbrXhe2cvY2X4ko4Go+0ZCi6ho4TCyQY+kkwkOjqA3G6lcHW1L2XjxuJyeipXRsDNNjRDs86CvKEcLRYVSLGcnRqIXS28vQ/GORsPXVi2nctXy6AaqioLv9b0oXh+GhGNS2xIIBFEmW741FwN8siEm3V1uPO4Rjh07yWuvHMPnTb5WzEtz6OCpvHZ/Tz0uXShOebkVJIoaopcL6QzF7i43ba0dPPn4Tkwmw3m3/4jg/GWi34BEQaHXyZw+3YvPN4YSjnDTR0rjiU5Htv19MoXqgTSl4ahC9AhmPZkM+kKNdX/XWfpf2EXQM4AWjhYwMNfWoDebCHv9qEqEoHsASZYx1TgJuQeR9DKWulo0TSXU7yE0MIS+MuouDg0Oo476USORqEdKJyObTdFqbpIMRAANLRzB6HJgbphDqM+DFongbT2OrsyWJMYAwqM+vK3HCXqGCA97AQ2p34OxqpKaqzZGS2qn5DjFvFhB9yA6s5Gqiy+Ki0KjoxJVVbH198ORE2mPEQgExWMqNgCMiarBQS9Go0YgoLKkpTnpWm1HOori+UjnYbntI5uybsxYShINxdg89PUO0Xt2kMUtjSLfR3DekCgoausdKBEVJazwF1+8hdVrFk1ZP7Ll061YOT+tB3ZJS2PRcxezIUSPYNYzkUGfD6GBIQZ27Sc8PIKs0xFRFDRVJTwwjGFeE7IxjKW5nog/gLHagSzrCPYPRCPOJDBVVca9TKqmMXTwHXyneqL772gaij+AbW4DkiwT7PcQ8fmRdTokkxnZqEdXbmWsqxfZbMRc7RgXqhcTM54nthEZG0MdCyLrdaCLerh0ZiOWhtpxRQtiBQmsDbVZiz2UzWukctEC1FH/rKjeJhDMVkqdcJ8oqhzOcoaHBhka9BEIhIoSWpIuLC9TKE4xQ/TyJVVc9vcPc/xYNxWVNgL+4JSH/wgExST2Pdx42XJ2vXr4XUHxkU0FC55CiwpMVHgh0+9DtnDUYiNEj+C8IBeDPhcUr49IIAAQzdEJK2iRCJFQiGCfG9AYPXYqGg7mD6CzWVDHoju1j/X2o/gDGMvL8HefZfjgEUZ8o1hH/JgclUiyTMQfIOQZxOisIhIMoQbD6GxmIoExwkN+wufC12SLGUmWo3lD/QMEus7GxzR44B0CPb2gaWhhBdlqRtJAbzET8QeiYXkJFeXSCadsGKsqkJ1VBc2fQCDIjVJUZ0skUVQFAiECAT1jgRCBQBDfaGBSoSXZwvLSheIUuwpUPqSKy4UL6zna1kn7mT5qaiqnzPMkEBSb1O/hxsuWs6SlaVIvF3LNeUsnjCbKp4sdU+rcxWwI0SM4b0hn0Odbxlpvt6GzWAiPjKJFIkg6HZqioIXDhAaH0JRINDxNluPFBiS9DmQZNRgmHB7CdkEzo63H0RQF0FBDYcZ6+pBNxmipalUl6B6EiIpsMKCOhVDHQpCQYK2OBfF3dCPpZNDAs2s/GmBtqI1XXUOSUBWFiC+AZDTg7+wBoseChq25ATUcBkki7PWPy3FKnJvQ0AjBPg8Bsx4msamgQCDIjVwMhMmQKqrKbBZ0OhmPewSHw15waMlUhOUVk9R5MJr0LFrcwG0f2cSSlsYZ2WeBYCJi38NAIEhZuQW/b4xdrx5mw6XLCl7TPd2enL7b2YRRqoABcsoXnKoXI0L0CM5bYiFeyqgfSaejYvVyXBvWZD3H6KjEsXEN/S/sioocTYVz5aRVJRINU1NVsFqiwicwhob07ueqxGjrCVRFweCoRPWpEIkAUSGDLGFurEdfZsP7zlEioSBaKBQryBZFkgDQgiEwGDDX1yAbdAy98RYSoKkapjkuwp4hNJ0OVVXQQmE4V0hBGR5B01R8EBVmoTCSLOPvPot1bkPS3ETGQoSHR1B8AZDA77Bj7DhLw83XluCOCASCREr5hjNRVMU2H/z0Z29g8ZLmSYWWzLZ9cDLlGsU2UxUIZiMDHi+dHW4CgSARRUWnl7FYTXl9D2PemipHGTp9bt/tXF56xARMsSslxvqrNxRegVOIHsF5SayMdWhklIjPjxoMEXzuFYC0wic0MBQvEmBtqGXu/7k1ugfO262MHjmOGkwWJmowBLqoOCEcFRwgoaER9nrRwhHCoz6wJ292KMk6/Kc6ooUWrGYMjkpCPX3JnUnw+GiKQrDXDXNcSFJ0Wy2d2Qiahr65HmV4hLAvEC2xLcloagQ1EhVgoYFhZL0O2WREf24T1fIlCwDiJb5ls5Fwe7SGv668DDQYevMwFcuXUHZBc6HTLxAIcqSUbzjTbT6Yupt5vsKr1GF5pWAqw2cEs4+p2hizmITDCiPDPjQ0ysutjIz4CYcUwmElp/MTBYneILPhskUsXbpwwu92ri89iu0RTuqvUYgewSwj37CzfFG8PpRRPxGfHwnQ2axE/AGG3zwUN/xj149VawsNDgHRnJaqdaswlNkIDwyBLIFyrlJBjEgkWnQNQCdDRAU0kKKbl6qahBYOJ3fqnJhRg2Noqoq1sRZJpyPsGUALZfih0jTUsSCBjh5M1Q4sDbVocG4vIR+SXo+lqY7Rd46jKko87C3qLdKwNNSiL7MhG/TxAgvw7t4+QfdgdI8gnQ6J6OanWtjLaNsJjJXlopCBQDBNFMsQq29wUVvnoK+vL+sxuV6j1GF5pWI684oEM5fZum+TwaCnotKG3x/E5wtiNBqwWs0YDBOb9YmCRG/QceJ4N6GQn9dfOcbilibOnO7N+N3O9aVHMT3CqQKqq/tsXucnIkSPYMrJVFmsmKiRSDTfJRBEb7ehhUJIsowyFmLowGH8ZzqJjIWQZAnF50cZ9SMb9IBE0D1I3+9fRl9mI+z1oSuzog0p0XyeGFFNgWQ2Rqu8BUPxMDZN05D1OtQ0myBq4TCKL4C+XB/1zhiNyAYjqiQjncvRQYlERUvS+RpaRAXeLdowdOAwo8dOM9bTj6pGIBJBO1clDkmCiEp42IuxqmJcGe9YiW9kGSTQVBUNiIwFUSMKw0eOM3a2ryT3RiAQZGcyhthUvLUWnhPB+cBsy09LxOG009DoIhAIYbWa8PuDWCzGnDyuMUHirC7nxPEejEYdOp1MMKRw5nQvH7/zGgwGfdrvdq4vPYrpEU4tyiJL8sQnZUCIHsGUEgs7y1RZLJ92MnmKYqJKC4fRIkq0IpokIUkSWiTC4JuH0ZdZ0VnMhIZHCA+NgE6HzmhEi0TQIgoqOmSLGUZGifgDGCrLCXmGQJLQWczoymyEh4Yx2GxRoRKKeXU01EAwKjpUFTAlCxhZRm+zAhD2+kAKoLNZkYIhIoEAstGIJkfQwqFzx0uAhGTQI+l1ScUI/Gc6iQQCKF5vVChB9DqyHPXYqBoRv5+xs/3oy6xJZbwrL77oXe+WLEMkQmTUh1ZhQ28vw9ZUV/C9EQgEhdPd5ebJx3YSDCnMqa0k4A/mbIgVKpYKEUrCcyKY7cy2/LREEsXH6GgAnU5m5aoFOZ0bEyR9ZwcJhxUMBhmdXofDWYnHPYLBoGfFyvkZz8/lpcdE4iif35xYf9ve6WBwaJRRrzencaZDiB7BlKJ4ffHQKkmO7i0TC7vK1bAePtTG8P6DaT1FiaLKNr8ZTncQ8gyCJqFJEkQkQgODRAIBJA20c14OSZJQQyE0RT23545MeGAYTdPQxsKoej06iwmdxYK5fg5aKISs06EzG4kEw+htVsLDI0QCY6BqKV6ac+h0yEYDGA0oQyMY7DY0VQM0ZL2MompoShhZ1kWLI6BF25Kjoknx+uLFCBSvj9DQCOGhYdRQOCHEDlBVJL0OY0U5WiSCY91qyhbNS5rfqPDSoiFsLgehoREUnx99mQV7tavgeyMQCCbHc8/u59jRLvR6Hf19QzQ1VaNEIhMaYtneWtfWOTKeN1vDewSCyTIb89MSiYmP557dzysvv83zO/azd/cRbvvw5Vm/wzFB8uTjO1HCETRNw1Vdychw7vtW5fLSI5M4evH5N3nysZ2MjPgpL7dy2x0T93fjZcv58Q+eIRJRMVuNE/YvE0L0CKYUvd0WD63S28vGhV1NRNg7SmD/QaQMnqJxoqqigpBnCMlkRG+1EBkLovkDqMEQensZWmAMJBl9mRXFF4gKIL0OVBVNjURFiiyjL7NhX76Y0dYTBLp60dss1Fy1Ecu5vYE8+w4w1tObXIUNkHR6JJMRxoLRfXUiKqE+N5JOj85mI9DZjaZEosecyxPSTDpksykadqZEkCQZ2ZxcjMDffTaaj6PEcoG0uFcIieh1PINIOh2qGkkSLUNvt+J5ZS8hzyCy2YTOH8Ayx0XgbP+5e+PDUMC9EQgEk6O7y83ePa3IOhm9QUbTVI4f72bBgroJDZFsb60ziZ5CwnsS39DGrht9W5w+HCbb+TP9bbrg/Ga25qel8sLzb9LbO4QsS/T3D/Ozn+yY0DOcKJj27WlFjUSQJImbbinu+FPFUXeXm5/95Pf09g4iS7H+/n7C/i5pib68cVaXI8sq258vrD9C9AimFKOjksqLL2LojbcIugfRmY1JYVcToQaCRMZCmDN4ilJFlRoIRIsLGPRIcjRvBkCSJdRAAEmnw2CzUrt5U/waA2+8xejRU0QCEZBAX1mBbDQS7PMQ8gygKhHUsQC+M51UnPMwjR47NU7wACBLGMrtKBEVSZbRJEABUBnr6UU7V2lFCytx75CkgWmOEy0URlMiGF0OZKMhXowg0HWWkYNHkGQp5ZJStKJcRANVRTab0FstcaFkdFS+6wnTychmE1pYIegeAFVFX2bFNr8BTnUVdG8EAsHkGPB4iSgqCxfV09HeTzisoEZU1m1oKUlVtXzCe7q73Dz37H727m4lElEJBEKARjAYZnjIR3mFjcYmV1ZPkfAqCWYaszE/LfHFQVtrJz3dA5gtBiwWE4FAkJ7uAdpaOyccS32Dizs/tZlrNr+Pzs5uGhvraWiszrsP+cxZW2sHPd2elP56aGvtyNqOw2nH4bSjRlSsVkPO10tFiB7BlBNLxM9WvS1Tzo5sMWX1FI0XVWb05WVoYQV1bCy+746mgaRpqEoEvUGP5ZynKDQwhLZrP5JeFy1coGooQ8MQiRDs6wekc2JqjKE/HqJ82eJoSexAdA8e1BTlo6rIRhPGqnJMc2pQAwH83b3RPXtiJa8hXgQhekqEkHsQo7MSncUMagTZYImPFUDxj40PoVNV9PZyJJ2MucaJbDIiGwxJojDQdTZa3MDlRJJlgv0e1LEgmqpStWYlwZoqKi9cjjrqL1llPYHgvUauBkJMuGiaxoqV8+g7O4jRZGDlRReM2+Avtc1sb61VVc16PXf/MBarKX69VKH04vNv8uTjOznW1oWsk2lsqqa3dxBVVTEYdGhoBAJBAoHM+UezOWlccH4zm/LTUl8czJtfm+HI3Ms619U70ekj1NQ4c/qtmtzLCynPz6Mk/r51dbpzvNZ4hOgRTAtGR2VGgzpbdTeDvYyyNSsZ3n8wozei8sIW9DYrof4BjNUOFJ+fgV1voPjHMBj0hEd90c08iX3N3v2yKV4faiiEpNOBqqFpUa+JOhZEVRT0NiuSpiEZDUR8fvynOzFVO6KCR69PKGgAyDI6mxXXhnWMHDiEFgpiqCxH6u0/Fz6X3hBBUYioGuY51ZQtWZDkFbO3LAQgEgjEvURxJInKi1cS7OqJ7sFjMCSJwqG3WxnY9UY0F2hkFFNtNUZnFURU5lx/BdZ5jfT19WGsqkB2VuVxNwUCQSbyMRASH+we9wjlFTbmzq/l0UeeTzofSNtmvm+tY9f72U920NM9AEBdg5O2Ix1J4mrrU7sJBcPoDTr0epnuTnc0H1GDcChCZZUNny+I1WZm1BtI6ymazUnjAsFkKUZYZ7oXB61H2nFVVzAw4EVRAqiqRl2DkyUtTXm3/9IfDrDt6T1Zf6sm+/JiSUsjdfUOenuHCAV9RCIq1TUVLGlpnPDc2O/bmdNd/PR/vp73+ECIHsEMI1t1N31lOQAVK5Zga6ybsHpbomhqvP0mFK+P8IgX96v70NvLot4VnQ7FO5oUHifpdFHRYLUQ8UfD49RQGFQVZdgbrXZ27i3K4P63sM7//9n70yC5zvPOE/2dLfesysraNyzEVgBIkBBIkAApUZRAk5IoyW1Ltu+1Z6Qet2KmIzw9caWItvVlOnxjbjgU3erwtNwhtcP2tHvs6JZEedQSSIoSKUoUBZIgISxcUCBAYqkFtWRlZVbuZ70fTmUiqyrXqqxCFfj+IhgSKvOc8+bJc06+//d5nv+zDVlT3YalRRSF0O4dJLGRFBn/9mEylz8gPzWLlS+471lhS72IA1gW8795G0s3aD98D05BR0+lSI1eITc5jbmQXrqNLIMs4W1vw9/fsyJ9ENzePrKm4uvvoTAdIz85jb+/l86PHiV017YVq8Hr3UtJILjTWc0EoVy4GIbJP/z9C0u2f/q7L4MEXq9WcZ/Nrlrv2z9MKORn247eim5xRbHS09fBzEwSx7GxbBvbtpFkCU1TWFjI4vFoZDP5qil1xajS+FisZLG7lYrGBYLV0qq0zmoLB0986n5+9fJbJBMZ2iNB/vB/PNG0sIrPLfDMydfrPqvWungxMNjFl//4Cf76288wPTWPLEtoHm3JQku97QPB1UsXIXoEm4pa7m5F0QPVI0V6PEH81Bkc00Rtb8PRCyXRFNg+iB5PoPg8OHphSXqcbVlkr0+ghoO0Hz5I7tmXsFOppRFiWXZtqIviQJbR40n0+AWQZCRFdiNDkoTs1XB0HUeG+Ku/cR3VZBnbsaEYoXGcUr8fFGVJihsAlsXC+XdJX3ofyeNxHeM8nlKD0SXYNorPh6c7SuiubSvSB7PXJ0rnVVu0zS7Mxuk8fqRUl1TORvRSEgjudFY7QSgKl7cvXF2x/cV3bgCw/+C2lkRMLo2OsbCQZduOHsLhAMGgb8n+DMPEtm3m42mGt3Vz5fIkju3Q3RNB05RSTU8g4MXv91YtBB8Y7GL7jl6eO3kaXTfxeFQ+/dmjIsojuKNpZVpntbq9UNiP16vh83nwerXKi6l1SKVyZNN5hrfXfla1wvFu3/5hotEwwZC/aVv+tSJEj2BT0ay72/JoxPy5d8ndnEaSZYyFFNpi+lYxklOs+YmfepPs9QkkTcM32MvMz36Flcuh+P20HRpxx6DrSw9m26C4ZgiOaS32xJFc32vbRvL60NrbMTMZHNNyG5b6PciaghZuJzs2SWFmbuk+F59NkizhLNM8pcMWdNB1sB23FqgKoT27CN21raHz6ug6nkgY/+DKfGB9PtmSXkoCwYedtU4QKm3f1hYAiZbY7BZrdaan5pmdTbJ79wAer1raX3GFOpnMspB0V5F37e7n6EP7efyJjwCNu7dNTsS4fm2anbv6CAR9ZDN5rl2dZnIiJoSP4I6llWmdler2jj9yN6deeRuvV2P/wW2rFlXhsJ9AA8+qVjjexedSWJbNXbv6kGV5xULLeiJEj2BTUcvdbXn61fJoRGhkN5nLH7gubYqCY9sUpmbx9XavEE3GQgojkcIB8tMzyKqKpKoYC2kKP4+7/XYqpZ9Z9q3gj+O4TmmyDBLYhQLWYk8dSVbwDfaSWUihhoPYhok+n6y6AqP4/VhUqNMpHqfOwo3k0QjsHKp4XopRmkZd81rRS0kgEKx9glBp+y/8waPgOGu22S2uQHu9GntHhrhyeZL3Lo2zZ++gewworVDfe/guxsdmMQ2Lf/E/f5rDR/YsGWMjLJ/82dGwqOkR3PG0uhfQ8rq9+FyKn/3kzTWLqmhnG8cfPsDzz75JYj5NRzRc9blSHMOl0XHAaageZ+mxbl9/JCF6BJuORt3dlkcjkmffwTYtvL1dGHMJHMvCsW1Ce3aW9pH+4AY3f/wztzanDNvSUX1eLN3AyWSbHLED8mJvH8Mq9dQx5hJIXnWxkWiqZJ6wAklCCbiOTZaRrvyeWqgK3q4o6dEr+Hq7q0ZpAoN9JcsGf42ozVp7KQkEglus1RK32vaN7nNyIsZcbIGFVILZ6SydXW1LanWKk6X2SJAb12f4wh88ymOfvG9Fat3QcDc3rs+gaaubNhTT5MbHZhka7t5yjSAFgtWwHr2AltfttUJAXDj3Pqd+/S6GYaFpCscfOchjn7yv6vsvXRxbdZ3S7eyPJESPYFNSy90NVkYjJI8XMxYHSUbxqPi3DWAmF5BUlch9BwA3AnLzmRdWCJ7SPhfS9VwTK+OA4vcgORJqexitLYQaDJCPzeMb6MG+ehMjPl9jewdHlnDMClGeSsgSKCoYBng8hHdtc2t0YvPos/GKUZrEuXfIXh8vRX+KgaPcxBTgiqBizZSno31NvZQEAsFS1mqJW2n7RvZZTE+bnIjRHvGQmNcZHHInHPv2Dy+ZLOWyBXp6IqVV22ZXY2u5UxXHsbCQJZnIMDeXYmioa0s2ghR8OGhlE916Cx9rOdZqBUT5MR3H4Y3Tl3Achz37BonNJjn1yjsce/hAxf20ok7pdvVHEqJHsCUpj0ZYpkV+/Ca2YYIiY6bSyIEAnrYg7Yf2l/rvxE+9iZXJV99peRpZpZ47VZA0FZAxs1nMTJb8TAytLYzW3obs8SB5tLp1hWY8CapS4yCLqXaS5JomSIBHw9vVgRoMlKIxnu7oiiiNJEukL18Dx3ZNGwo6sz//NY5lYSy6wHk62ul67Dj0dKDPJ/G0hel69BjWYtSrUu2PQCDYvBQnJrmcTjZboC2ireilU2uy1MxkqpY7VfkE6dB9dzE+FsM0TP7oSyeWpMkJBJuF9WiiW22RohXHalZALD/moXt3UsgZdHW1N5QiV69OqVERdzv6IwnRI1gVt9vO+JYhwRnyk1PYpons8SB7VKxcATubxfJqJC9cxMwV8HVHMbN5ZFXBMmsIGonFGh0JHLshFxRHN7Asa/H9gGFizM2jJxbIpxfwxRJuAElVoUo0x84XavTskpBUFUmR8Q70Yi2kcCwHSVMAaUk0JnTXNsxMlsSb58ndnHXT3LqjZMcmcSzLrUmS3ONJsoykKiDLGMkU8VfPYO3bQe7qBHZed226cZA9HuHgJhA0SCtXiNdCcWISCvuxTJtAwItlLSzppVNvstTIZKrequ/yCdLQcNea0uQEgvVkI5votvJYlQREpWdRpWO+cfoSXV1+YrEkXV31o7q1osDrIRhbiXjqCJqmVXbGaxVOkXtGkICbz76ElM+hBAI4to1jZZFkFWSZ/HSM3M0ZvN1RbMPAsW1kzYNdWOaCpinIiori92GkM7dspaF6P51yrAqNRi0L27KBxe3rpa9VO4QkISkynp5O9OkYjmkiqSqy5IHF9L3wvl2lcxi5ZwQznWHulTcw0xnyszH32JqGFg5hp7M4hokjAZaCJElIioKZypD94DoRFNRwiMwH1wEI3rUNR9eFg5tAUIdW/uCvVTwVJybZbAFFld3/VeQVvXTqrbbWe73equ/tLFoWCJplI5voruexqj2LKh1z7MYMe0aG+M2b1xtKkasWBQY2TDCuFiF6BE1Rq3loM5PhVgkn/2AfnkiY/HQBWzdwLFdYSKqKlcq4jUYBM5vHSmewLcu1npakxf8oubBp0TDRY0eYO3UGfS5+S8gUralrRYeqCRZ70dq6nmiqsQ9JVVD8PvTpGLZpuuMu6FiZLIYsEz99HiV0Szjq8QQLF0ZdBzpwP4cD6AZmKlPmPgeYFo4su2JRknAsBzUSxM66olCSAMsSDm4CQRWK4sQwzJb94DcjnqqJo/KJSSDgRUKq20tnNdQTNbezaFkgaJaNFOm1jrWWRY9aEaRKxwwEfRz+yG4+/tgDzMfTDR2zUhS4Ul+xzebQKESPoClaYWe8XDjpc/PM/ep11GCgap+ZaniiEaLH72f2578uWULLmgqKglUoICkKsqK46WOyTGCoHzO5gLGQxj/YD7aFmStgGya9j38MAEmWkQMB7FSZk1pR8FSK+tTLgGukUViNaJJjWhiJZOXj2Db5mVlmf36qJDxzE1MYyQVX4FluU1RnUehJiyLPgaXNVhUFf38veT2Hmcoge7y3hq4owsFNIKjAr35xgV/8/B0y6Ty2bZNMZrn38F1r+sEvr8UJhf1kazTuqyeOihOTontbWzhScm9rFY2ImttVtCwQNEuzIn09TAjW4owGtSNIdx/aueKYn/nsQ0Q72+jp6WRwqLup8be6cel6I0SPoClaYWdcFE5qOEju5gzmQgpbN5j+yS8wP3q06YhPYLCPnk88jJnOoIaCxF49Q/bqmGshDRDwg20jez1ooQCyqqDPL5Adm7xVh6PIzLz8GmYqg5nKVE9Fq5XqViviU49aUSQJqJA9V8K0KMzGWLj0PlauQOrd9zDTWRxdX6xRcut2cBy3rkeSkf0+ZFVxbbKzeSRFoRCLY/tUjJyB4jHQ2tsABzOVEQ5uAkEFnv/Jm3g0H9t29DA+FmMhmVmzJXN8LsXEeIxstoBl2iiqTCDgJT6XKr1e3Gel1dxIR2hJo9CBwS76+qPMzMzQ0+NOglpNI6LmdhQtCwSroVGR3oqI7PJjAXzzG99fU8S4nvhYfszi82EtFD/f8UcOcuqVdzZtVFeIHkFT1Goe2ihqOIit66SvzGLrutvmxusBRW46VW55mpxveIDC1CyyV3P1jK5j5/LIXg014MdIZcjfnAHLcndQTHMzTPI3Jusf0K6uPmTNg23oK4VPrdS4aq8V/+6wtF6oirByDJOp53/p1iIpMkrAh21b7r9tc9EMQUGSZZRQAMXjwczmcAquMNLaw/j7u8jlcyiORNfx+0uObbfTsEIg2MzkMgUG9vSWCvTjcwuYhrWmH3zDMEkmMpiWRSDgJZstYOgmr792kXffvl7muHTXitXcC+c+4Nvf+pHb5XyDi4iXi5rNYuggEKyG8uu5UUOAojjp648u2Vc9cVR+rFakiDUSrSo/5vLG782y/PMdf+Qg+0aGV52at57PDSF6BE3TSPPQ+ki3LKIlCUmSUINBzFS64VS5YpqcXdBLVswLb43iGKZr/2wZpciMGmlHUlVX8DiOayNtmK64aCT9rIimLtbCrIwE2YYBkuxGj5a8sGz/yuJKq1XLHa75sJFTrOExwdQNJE1zzQocd3eSpuJpb3N7Gfk8ICs4fhNbNwhuHwRZQvH7cdIFtLZw6TsQYkcgqIw/6F2ymjo41MUffenEkkhLs2iaiqLKZDJ5clkdWZbQQgqvn7pIKOwvTbBOvzaKosql44+PxUgmMkQ7w6VIU7VJWLM0OxHZ7A5OAkGjNGMIUBQn5fdbsw5trarzKUZzLo2OA06p/1arqfT5lvf4aXTcG/HcEKJHsCrqNQ+thVszohHYPkR+YsqdmNsOZnIBJeBbkSpXdHmTQ4EV+ynMJdxokWWDIrs6yrZxsvrSfcwlUEMBJFXF2xWlMD3r2kzbDZgMFNFUJMfBqeTUBq6Y0jQc06iRriYhezw4llV9P7CYllYhCrQoEuuO2XHc9DZZAk1DWbS89nRFMVMZOo/fj9YWxrYsYr981U1TDAex8rm66Yq3265cINgsPPHk/fzi50tTOdbae8YwTCzTxufz4A94yGV1DMMimy2w466+JROsY8cPcOH8B9y4PoNt2bS3Bxka7q46Cbs5OddwoXKRZiciG2n5KxCsJ80aAlRKZ23Woa2VdT5rrQ1qRKzU+3yNPj826rkhRI9gwynWBeE4eHo6KUzHcGwbSVVXpMqVp6/JPg/W/l309PQAUJhPYqbSIIESCGDn8oCDpKo4yyMxloWVyeKYJtl83s1rb6T5qLxYVKMqSLaDs9yJbdFO2pFl0A0UnxczY1IxSqPIrrGC14OVy6O0h7FSmZWRIaguxiT3/JmZnJtq14BgUz1qybTAFZZ+1/Vu8TwX+/oUYgkI+4gcuaeqmGmV655AcCfw0Y8f4sgDB1qajqFpKu2RINlsAdO08fk9aJpKIOBdMcF6/MkjPP7kkZJ73D/8/QtVJ2EXzr3P889dIJNqfAK0monIRlr+CgTrSbOGAMUUsvJ0sdUU97eizmetIqJRsVIvMtXoGDbqudH6ikaBoA7FuiAkN5Lh6+2i+2MPMfTFz9BeNoFe7vKG45C5chV9PknirVHip97AsSxs3cTKZJE0FdnjRQ0HkTyeZc0+HWSf71aNjCwj+7wo4RCBXdsrD1SWUAJ+1wAhGHDtsIvRGXVxvcBZFEK6AYCl69XFlGWj+H14OjtwLAsrnaleI1RF8CDLrpxqUPBgO8jBAI5lY1uVhWXknhEGPv8EfZ96jOiDh2m/e1/FXVX6PhJvnkePJ+qPQyC4QxkY7OLuQztbagE9ONTF0HA3+w9sY2i4mx07e3ni0w8gSRI3rs8gSVJpglU8/uEje3jqcw9VfM/NyTneOH2pNPlwHIeTP3qNyYlYzbEUJyJd3bc6tcfjKd54/VLVbcsnQbZtr5jkTU7EePvC1brHFghuN/Wu5cdOHOZrf/pF/uR/+22+9qdf5LFP3rdiH8XITaX7shblz5VK92Emky+Zm1RiNdsUWS5Waj0van2+ZsZQ71y3ChHpEdwWGqkLWmmPHcROpclNTDH/6m+wDRPF58M2TSRZRmsLI2satmGgJ5JL62uKdTiShOz14OvtxrZs9NgcxnyySgmNhGPZSJqKbS42GS2+qTySVJam5uSXNT1d/pkW0pjJ+g+dijjccmBrAjtXQGtvwz/YS3jfrpJBQTmeaAQ10ka6hoNLK+zKBQJBbYqTiKe/9zLT0/O0tQV46vPHeOyT93Hs4dpRpWquU/G5FIWcQVdXe1OrqMtXcUcv3mB2OskP/+nXvPyLCxVXf2sVUYtaH8FWollDgGqs1bJ9NdGitdhHNxt1qfb5mhnDRvXzEqJHcNuoVxe00h47g+xRyV6fIHdz2u0/49iuJ8Ki8Ok8foTEW6PkxidviZjFiI9tWUiK62CGJKHPxrBNC8fMVO2BY+fykHedz9ZkSV2kGdOEZcgeD7ZpYmdyTW1n5XI4toWRXCBzbRxvZ2RVaWmtsCsXCAQN4pT/5z43Vmv7HO0M4/VrxGJJuroanwCVT0QuvzfB7HSSnt4O9uwdrJmqUmkSJGp9BFuRVvWYWotl+2oEwcBgF8cfOcjzz75BYj5NRzTcsIhoRqyU1/3cfWhnQ+MG16Wunn23cG8TfGgoFsuHRnaTHr1CITaP7PPgH+onf+kakuzWx0jI2IaJFmkjcvggSjBA5uqNpeLEwU3ktBcbdToOuckp166ZBnSM47hOb7cRyaOhdUYoTM26f6hlg718W1nCyhWQPRq2rmMXdOKn3kSCJbU9y1luWNAKu3KBQFCbojjw+jT2D29rShxUi6T0D3Sy/8A2nn/mPIl4cxOg4kTkjdcv8cN/+jV79g42XJBd/ndR6yPYqmyGHlPNCILJiRg/+8kZTr8+imFYaJrC8UcOVky/q0SjIqv8eaOoMkcfHOHxJ4/UFDKXLo7xzW98vyH77vVAiB7BpmN5sXxoZDeBgT7kUIDpiUkM+yre3i6MucSiC5r7X+Lcu5jZnGsOIMu3Go8CSsBPYKgfM52lMDePFgqi6xV66mxSZJ+XQix+K1LUoOABQFHBcEUPlo1Z0DHmk8y8+Apae3jJ+S1SybAgMNiHpy1M16PHkBVFuLcJBOtAfC5FPJ6is7ONXE5vWBzUiqSMvnuDi+/ewDAsVLW5CRC4E5EHHoSXf3Fh1d3Wt0K3doFgM9OIIHjphbM8/d2XufzeBLIis3vPAB6PusJGuh71RFb580bVFK5cnuTypQlOvzbKF37/YxWFzGaI9gojA8GmolKxfHr0ijvB7mhH9ntRfB4UTcW/bQClLYykKGjhkPt+y3KFwaI1tOu+BpKqoidSrquKZWOb5pYRPHhU1/RgNdEmCdeAQZKw87qb5jY3jyTLeLo60RfSzPzsV0z8959y80c/JX1tnPTVMeZ+9Tp2QS99B7M//zXj33+Gm8/+nNgvX0VfSAnBIxCsA5dGx5iajHP+7AecP/s+l94da0gcVCsavjQ6xjMnXwcHdu8dJBT2c+qVd5o2ElhtQXarthcIBLUpioqCbqKqCh6PwtiNWfwBb10DkkqUmymcPXOZ//5Pv+bsmcvAreeNP+Bl7MYsHo+CqikUdLOq6cFazBVaxYZEev7jf/yP/Nt/+2+Zmpri3nvv5Vvf+hZHjx7diEMLthi1iuXVSBtaOEToyCGSZy5gpjIomoYTCuLp7FicyHe4bmKOjV3mHG0mFjBZKB3HNozWDVqS3HqfZqIvzaDXEDt1e/ZIOLZTSm1j8WNr4SBWLoeZSuPYNlo4gOM4LFy4iJ27gDEXR/Z5QZZRAn70+Ul83Srenk7MVJrEm+fdyI8QPoItykb9LjXTUHByIsapV96hu7edxHyGfE5nRk/w+d89Xnfb5ZGU8bEYtmUTn0uRTefZvrODbNpZU1rZWnPuNyJnXyD4sHJpdJyZ6QTdPe3MelQcx8YwTN67NE56IVfTgKQW/+Hf/xPPnTyNrpt4PCqfeuooX/j9jxEM+ZiZmscwTFRVRtNUevsizMUWKj5fNkO0d90jPd/97nf56le/yr/5N/+G3/zmN9x777088cQTzNRwiRJ8eCkvlndse0WxvJFKoy2mWPV/+hP0PvlxvJ0R9Ll58nPzmKk0ctCPpKqLYmADwjmOgxwI1H/feiDVeE2W0CJt+Lo78XS04xvoI7hzG6gyxnyS3PhNrEVTBNnrQfJ4MNMZXHtvL45hUojF0efiAKjtbSUhauV1zFRm/T+fQLAObNTv0ksvnOWb3/g+f/WXP+Sb3/g+L71wtub7iyuhI/u3ce/hXRw6fBd9A1H27huue6zySMqFcx9w9f2bLCSz/PyFs+RyOqlkdtVWsOU2041adFezpm61xbdAIHCfNf/4X15gYiLG229dIxj0oesWesEgOZ8pGZA0aldf5OyZyzx38jQODp1dYRwcnjt5mumpeZ763EN4vBqmYaHrFsPbeshlC3Ud2m5ntHfdIz3//t//e77yla/wz//5PwfgO9/5Ds888wx/93d/x5/92Z+t9+EFm4zlxfGV8G8fJnP5gxXF8vMXLjL3m/PkEmlUv5/o8SNE7hlh4d33iL9+1jUbcBxQZGSvd9HAQMMpLNpIl0dFFOVWKlwLcPL51ri7VaPavqtFlySQvV58fT0YiSSOaeFpb8PMZJAccGzb7S8EYNs4toOZdCNhns4odsBPYXYOO1+AYABPRwRHL+B4NeHaJtjytPJ3qVokZzX568tXQjPpHNFouGGB8tiJw0Q6Qnz7Wz8i2hlmaLib2GySTDqHoZtMTycJBJqzgl2NzbSwphYIGmNyIsal0TFAYt/I0KoEwOREjP/8tz9lenoeCYlsJs9N3WTX7gH27Bti9OKNhg1IlnPj+gy6btLZFUaWZdraAszNpbhxfYbP/87D7Ns/7JomvDaKaZp4vWrN58vtjvauq+jRdZ0zZ87w9a9/vfQ3WZY5ceIEr7766noeWrAJqVQcX26bXP66JMuE9+0kct9BPNEIejzB7EuvojsG2kIOcyHN7M9PoQYDpN/7AMcsEzCWjZ3NgSwhSWWXeJnA8XS0YyQXcPQWpblJ0voGlRR1aW+gBnBsh8LsnNsINV+gMDe/pBmq4vOh9YUpzMxRmI2jBHyoWhBHL+CJtOEs1j/1PvlxzExWuLYJ7gha+bv0q19c4Bc/f6fi5H41bmWt6FWhaSqyLDM03F06bi5X4PjH7qa/r4/OrraG97ca4bYZipUFgq3ASy+c5T//7U+5OTkHQP9AlC//8RNNLxBcGh3j5uQcPr9Ge3uAdCpHLq/zqaeOcuzhA3zzG99fdUrZtu09eDwqCwtZ2toCLCxk8Wgq27b3AO4z60t//ASPP3mE+FwKwzDRNLUUFa7E7XTDW1fRE4vFsCyL3t7eJX/v7e1ldHR0xfsLhQKFwq3mjgsL7sqzbdtuAfomx15cPd8KY4WNHa8+n2R+0aDA0xXBTGWYf/M8voFePB3tFV/PXB+n7d4D2LZNZvwmhfkETiSEpKk4pkVhPsHCu++hJxbcCfqKD+i4YkiWl0z2UWSUYMBtdmpZ5Man3KjPaliMHlWytC5vs7FmmhQ8OODoOoU5HXCQPJ6l50gCI51GDvjw9fcSPfYRvAO92Jffxxn9gPyiuIkcOURgxxAAvoFechNTAO57b/N1Lu639WWrjLNZmv1dguq/Tc8//yYezedO7mNJTv74NfaODNE/0ElHNEQw7LvVGyeWJBjy0REN1Ty3j37iXvaODJVWQvsHOpe8/+bk3JLXllPpuIGQj8HBTvaNbEOW5Yb3NxdbIJvJM7z9lnAbuzHDXGyBvv5oxW3rbdMIW/FeEeNdP+7E8d6cnOMH33uZmZl5/AENgJmZBD/4/sulZ0ijLHo3lf5TNRnNVOiIhunrj/KZzz7IMydfZ+zGDIGgj8989iH6+qOl8dUa772Hd/Gpp47yk2dOE4+n8Ggqn3rqQXp6I7x1/oPSvd/XH2X03Rs8c/J1suk8gZCPzzz1IB9vwiWyUdZyHWwqy+q/+Iu/4M///M9X/H12dta1F97k2LZNMpnEcRxkefMb423keAszcyQcG60thCRLOG1BjIU08sQkXqNQ9/VMNkMm5KPgUXB0CVQVSdKQHYtMWxDH9Kw8aHk6mySBLCNJEpIi49vvNtHKjd+k0NXuFvlX2F6SZZxKgkgqFtM4NVWNHvLXLLtZFxY/t6SpSIqKXdABG4LeRQFolcacMw3CA8MUejrI6XnMSAjvw0dw8gVkv5dCOFSqc0hfGydz5Sq2biJfUAnu3kloURDdDsT9tr4kk8nbPYRNQ7XfpmBAZnA4iizJhNqixGaSjI9PoqgWigpPfOoQb5y+RD6fprPLxwMPjqCoVt3aIUWF7t4AsPS9F869zxunL1HIGXj9Gg8c3ceh+3at2HbFcY/uQ1ZsZmZmllx79fanqCZD29txnAKBUIBUssDQtnYU1eSFn75acdta2zRaM7XV7hUx3vXlThzv+Pg0gZDMjp0d+P1eAHK5AoGgXHqGlBOfWyCVyhEO+4l2ti15ra8/yH1HtpFIZJAlaHe8RCJB+vqDzMzMcOCeAfoGPrlk+/J7sd54f+//fZwjR3cQm0nQ1RMhk87xn//ux0vu/aHhbl599RzRqJftOztIJbO8/Ms3Me0cQ0PdK8a8Ftby27SuoqerqwtFUZienl7y9+npafr6+la8/+tf/zpf/epXS/9eWFhgeHiY7u5uIpHIeg61Jdi2jSRJdHd3b5kbc6PGq2te7DNvw4Jbz2OmMiDJ9A4OuJGeOq+nMwUyySyOZRNYyLqNRlWVvqEh5NEP0BPpyuKjGOVRFdSAH0nTsBbStFsS2RvjKAUdLW+4x6tQHyMHfNi6CTJIkuxGjgBJURbTv6pbXxejPP759MYJH01FCwcxEkmUYBDFA0Yq60aiZNkdke2UHOfUjgjeyVkimhe1PYyZzhDRvHg6XfODIvp8ktzF92lzHNRwyD1fF98nsmfXkvdtJOJ+W188ngoLCXcAzf4uQfXfpkzW5toH8VJERZIkhoYG6OlxV2lP/FYPB+/eWzMy0yg3J+d4/rkLOI5TOt7zz13g4N17V+x3+XF7+zqYnZ3FMhXmZtOl1JZq+wMWt+3g2LH7eObk64yPJUurxO3tHfztX79YcduR/bs5diy9YpuR/bsb/qzL75V60a3bzVa7t8V415dGxmuZCtm0zbWr83g8CgC6brFrt2/JMwTgFy+eqxlB6enp4Ykn0/zT078qpaE98amHl9xzPT09axpvcfubk3P8+3/79Ip7/zOffYjx60mGt/eQTTtM3Uzz3ug4H1yZo7s30tKoz1p+m9ZV9Hg8Ho4cOcKLL77Ib//2bwPuyX3xxRf5kz/5kxXv93q9eL3eFX+XZXlLXOgAkiSJ8VbA19lBx/33knjzPHosUaoL8XV2NPS6qqp42sPkNQk5U0DSVBS/D180QtcjR5n+yS/ciEYxzosDSKhtIdeRzLaxMjlk1UBWVdSAD3uxtgjTRKriFODkdSRFLtlGSwCaiurzYuXzOHWyzqSy/zYKM51FcsDO5txjS9KiuYMHO++muyGBrGpIhQL5mzkWzr+L1hVl/sLb6Kk8alnNlR5PkL1yHSudReuIYGcLyB4vZiqNnc4iL35HtwNxv60fW2GMq6HZ3yWo/tv0xBP384ufv3Or/uZzxxgc6l7ynsGh7hV/Ww3z8TSZVFmNUJdbIzQfT1fcf/lxbdvmrfMf8PxzF8ik3PqjHTv7mJlKrNjfC8//hgvnPyA+l0LTFJ749AN87V9/cUnh8dsXrtYcyyce/wgjB7atqVi5eK/88ufnt4Qpwla6t0GMd72pN97BoW5+9/c+tqKm53d/79El9/PkRIxnfvw6juMwvN2tkXvmx68zcmDbkvuq1j3XiG1+o+e32nNIkiAQdE1Y/AEvl9+bRJJlhre7jm6Vxrxa1nINrHt621e/+lW+9KUvcf/993P06FH+8i//kkwmU3LNEXx4iNwzQmCwr6p7W63X1XAQb2cEOZ9DUhUcw8TK5lm4/AF9Jz4KwNwrb2Cm0m5ql8eD4tUI7txG6vJVzGQKsLBtm8DgNsL7dpEavYJd0HFsZ2nNTzm2vfI1w8Q0UmUpblWo9/p6YJjg0ZADAex8HiubRfF5CYzsom33XRSSCyycfxcznXGbt+IgObBw8bJr8x3w4O2KYKUyJN48j5nOkB69gpHKosfmKMzOue8DtPY24eAm2JK06nfpox8/xJEHDmyIE9FaelzcnJzjjdOXSuYCoxdv8NaFq9iWzexsstS1XVFkTr82SiqdJTGfIZfT+ZvvPAvA7/7ex5oaSyuKlW9OzglTBMEdS9HJrJZ7WzOGKJXuuVY7KVa79/eNDINDyYTFtmz2jgwTDgcIBn2r7g3WatZd9Pz+7/8+s7Oz/O//+//O1NQU9913Hz/5yU9WFJEK7mzKraoD2wervq8odIo9YIr/9kQjhPbtYvb0GWzdcIWI4xA/dQY1GKDr2BEA5k+fw9ZNFL8Xx7IpxBPujlUFbAdJVShMz7Jw6X0i999L/NSbq7etrrddi+ywm2YxlU3x+0CC8P49WKk08795C8XnwTfY5zreWRaypuLt7sTK5rB0E6ktgJXNI3k86PEkybPvoPg8eKKRRSc4E0VRyqJpAsHWo5W/SxvpRHTo3rs4/dpo085u8bkUhZxBV1c7uZxOYj6D48DwcDc3p+Z5b3ScPfsGOfrQfn7x4jkS8xkkoKMjyPx8hueffYNjDx8oHasVLnONrD6vxgFPINhK1Ht+rGWxYz2cFGvd+wODXYsibpyn/9sv8XiUVfcGWy82xMjgT/7kT6qmDQjufOpZVcMtUZSdnCI9eqXie/0DfSh+P7In64Y3VRU7m2P+9DkUv5/k2bdRvB78A72YqTRGKoOVyWJmc+CA7POg+P1YmSzzp88T3LUdYyFV2fltMyNL1fvzADgOtmUhSwAShelZVL/PrcVJLuBkcni7ozimheL34TiOe17SGfLTs6gp93wpfi+S5G5nZfPImgqqjLens1TXY6YywrpasCXZSr9L5au1iipz7PgBHn/ySMMTl2hnGK9fIxZLIssy2UweTVPp7G5nYLiLG9dm+MLvf4x9I8P8+uW3yOV0OjqCFAoGfr8H07RWCI219NtodPV5M3RwFwhuJ40uMFRaRFivRYNa935JxC02QW1mUaSRhZC1sqnc2wR3Hno8QfzUmzimidrehqPrJN48T2CwrzRZLooiM51Fn0+itYXwD/ZhptJL3quGg8iaimPZOJKMnUrjOA752Tmmnn0RO19A9rkOZZ6OdgrzSUrVNI6NpCiu9bMkoc/FKcTmFqMdGpLXi11mSbupqSZ4iqYNigymBaqC4vO4qYCahTE9gW2YOLaNp6cTI5lCn5tHUmT824ZK2Xi2ZSMtRqlkj9uMVPIs1jNIMmo4hKProkGpQLABlK/Wdna3MT2V4PRrozz+5JGG99E/0MkDR/fx/HMXuPr+FPm8gWnavHdpnI5IiJ7eCPtG3NXfJz79AH/znWeZn8/g93vo6AjTUaVB6mqiXMtXn8fHYvzXf/g5kY4Qh4/sWTHutUaUBIKtTr0FhmqLCOu5aFDv3q805lqiZqMaGgvRI1hXEufeIXdzBlmRMZJptM4I2E4pQqDHEyQW+/Oo4RCF2TjGQhqtPeP+Oza/JJrg7e7Evj6JVWw+qqo4hold0JE8Go5hUojFsXQDK5PD19MJiow+HcNKZ3H8PlcYFGf4DjiWDapcsrV2+wYlwNrkEaDy/kOKjKxp2JbljnuxWaqkaUiaSmFqFkmRXeFn2+gzc3i6oji2jRFPkP3gBrYEcl8UefE9ZiaHb7Afp1DATKXR2tsA97sTDUoFgvWlOEGYnU2QSedRVYX3r9zE0E1M0+JnPznDl/74iYb3d+i+XXR1dfOdv/oxHo9CJlMgn9OZ0RN8/nePlyYhxdqd5599A9O06IiGawqNZldny1efpybjXL82RSZd4C+/+QO+/D+tbMx4uzu4CwSbgWoio14K20akoTYy5uXR6qMPjpSi1RvZ0FiIHsG6occTpC9fQ5JlkGUcx6EwHcPX21WKEJipDFZex9vVQSEWxzZNMHSyYzfR2kJo7WHUcJDEW6PMv3megmPj8wcwzZQboZHAsmUkWUJrD2OmMti5ApaiIHs9OJKEk82XzA8kScKRZTzdnRjxeSzdwDEMMBYHbVmu4NnIepx66Wrlb/X7sAs6SsCHrCjYDli5HIEdQ5jJNPpiDZPbo0dBVjWC24cozMZdl2pFRe1oR5+bR/Fo6HPzbvRMssCyMNNZHAlkVQHLxkpl6Hn8o8iKsuQ7q2REIRAIWsPyCcLCQtZtDOhRUDUZ23E4/fpoUyluAJqmIssy99x7F7mcTi5XYC62wN59w0ve97u/9zGOPVzfoGE1q7PF1efxsRhXLk+QzeSRJInJiTj/+W+fZ9/+4RVNTG9nB3eBYDNTL4VtI9JQ61EualRN4crlSS5fmuD0a6N84fc/RndPZMNq97aG959gS2KmMji2jbevu9Tk07FtQnvuKk2Y1XAQxeehEE+gzyeRVAVkGdswMRbShEdcn/liNEhrC6F1tKF4NBSvByTZnZwXdJBkFJ/XFRGyjJXLk5+YcmtWfF5knxc1GHD7ACVTWNl8ZXFj2Q2LkEpIHq3kcNbYBo27vNm5fMl+28zmsPN5ZFl2rbUdxxV/0XaCwwME79qO7NHQOjvwdERQ2sL4tw2geD1IqoqVy2MbJiAha5obyXEcHNNEkmV8fd04to2sKAS2D+KJRvBEI6X/LxAIWs/yVU+vV8M0TUzDxDRtJElm954BLMsmPpdqat/l6S5+vwfbsolWSV1rdpzOYg7/5ESs5nbF1edMJk8m7T6/2iNB/H6Nm5NxLo2ONz0WgeDDSvk9Xc00YGCwi7sP7SwJiMmJGG9fuFrzXl3t/V2JojDzB7yM3ZhdXLxRKOgmJ3/0GoZh1v0MrUJEegTrRlHQ4Diow4OYyQUkVSVy34HSezzRCJH772X256ewcnkUrxct2o4aCGCm0vgH+krRIE9XBEmW8EbbsZILmJkcALLX46Zszc6BJOHpaMc/2Efm6hj6fBIUBcWj4R/oJT8754ods06DHVUBJLAsV5Q0YnYgSyhB1/0My6r/fgBFafy95TiO2yhVkpBDQdSADwNw4hZGPImd11HbQkhILFy4iG0YWNkcjmnijUaIfORu8hPT7vkBPL1u4aGcs/H4Ang7ozh6we1JJOp2BIKmqZYWUv53oKHi48R8moDfi+ZR6enrIJct4PVqTU8KGq2RaWSFdy1F0o+dOEw8nuI//p//HX/AQzDoI5cr1lQKV0iBoFGaTWGrdG8/+ol7V7yvlSYIRWE2MzWPYZioqoymqfT2RZiLLaBp6obV7gnRI1g3ioIm8eZ5zFQaJeCrWgciKW5NjW2abhSiUEBSFGzLwhNpQ/F53MhRW9BNrwqFkDQNT0cE2aNhFQrkb86ArOAf7HMjFQO9mOksWjiEt6cLPZHEymSRZKX+z6ptuzUzxf8PrhAyqwgUWUZtD7tmCM2ImNX28lEVvF1RHMNA0jxIHg/WVAxZ82AbOo5hYCaSKKEgmhYguH0QfW4ex7bpevQYobu2occTzJ97l8zlD3BsB9nnITTYjRZLut+XqNsRCFZFNdFQ/vdczm0U7Pd76xYfd0TDHH/kIKdeeYe52ELTk4Kbk3OMj09jmQqPnThMpCPEjeszbNves8I8oNH8+rUWSR97+AA/+n9eZXp6nlQqh2079A92uv0+BAJBw9S7p4tUu7f3jgyhLFMDrTRBKAqzp7/3MqZhYdsOu/f0kcsWSvu8+9DODandE6JHsGrKe+9UmxjXa0haNDJQAz78g30UpmPkxiaRVQUlGCT2y1dd2+r772X+zfMYC2mQZNoPHyQ9egVsi8J8Bn1mzm0yKkHm6hi+gV4cXcfTGUHx+TBTaVcgSDKy14NlGBXHW8J2wF4UL5LkpsFZ9lLzgHIkkFUVczFyUhFFdvdbnlK3Wrts08I2TDzt7YDjWlFbJrJHRdZUPD1dmAspJFlBDYeQZBlPZweF2LxrVIArSns/cRz9vgOYqQxyKMBsfI5QzkCWJPxlDnsCgaAxqk0sIh2hJS5sZ964DMCRB/aQyxbqFh8/9sn7GqqzWc5LL5zl5I9fIxiQyWRttm/v5fq16ZIgS8ynl0RxGl3hXWuR9MBgF1/+49/i6e++zMJClra2AF/4g0cZGOzC3mptBASC28jyRZbl93SRWvd2d29gyXtbYYJQTrG26Gc/OcPp10YxTROvV12yz42o3ROiR7AqGum9U6RYC7KcotGBmc7i6+tGk2VkTSVzbRwt0l7qt5N48zwDn38C30Av8sQkvYMD+Do7UENBpn/6Mnos7gqJxcm8Pp/ETGfxdEbo+cTDi/bXGQrzSW7+6Kc4llldvMDS6Et5apvjVDc4sGx3HLVYLnigvuipkf5mLqTp+uhR1FCQ2C9fc+tzZBn/QC+yKiOFQ9iGQWEmhtrehpXOgGO7Dm9lFL+f+QsXiV94m0Iqj+rz4IAQPQJBk1SbWNy4PlP6e2I+g2M7ODgsLGTp7482VHzc7KSgJMBw6OptZ+7daZ47eZqdu/qqRnGaWeFdq7OacGYTCNZGM85nte/tlfOMVt+fA4NdfOmPn+DxJ4/ctnteGBkImqbcZtrb1QGOQ+LN8yXnsEZIvDXK5H9/nrnXz6LPJ8lOTuPYNnYuvxiViCLJbk8YK6+7ttUd7Xh7OvF0tAMQGOxzndccN8KDaYJtI3m0xToUt8amWHzfcd8BIh+5G0lWXEe5ajiOK3YareUp364aksRit9D6SICqug5sHvVWml05i+mAWsitt5E1FdnnQ5LASKVBkvAN9eFYNrnpGAsXL5OdmMLK5Yn98lUSb40u2Z0eT5A4c2HxO42s6jsVCATVC4u3be8p/T0eT5HJ5Mhk8nxwZZLRizfqFh+vhqIA6+pqR5Zk/AEvum4SCPpKgiyTyS8xRCiu8EqSxI3rM0iSVHOFd63jbMXnFAi2Oo2YC1QiPpciHk8hyzK5nF7xni5S7d7uH+isuv/1uD9v5z0vIj2Cpim3mS4Kk+X9dGpRLpr8/d1gWxjJFHlZRva4dTqOXsDxaqXakkrF9LnFSbwrUAAcV6TYNlbe7S0z/ZOXMD/6YCkKNfDUCdoO7CV7bZz5s2+jx+YqO7U1YSPdCJKqLNYo1WmAumjvrYaCmNks5Ja9X5JKdtQARjrDwoVRHNMisG0QK53GsW2Ce+5yDQxMA1lVsQzDrdvx+0qCprxBbPE7VbojSFLz36lAIHCplhZy+MgeEvNpnv7uy9y4No3X60FRZXTdYnY6yef/2SMtmwQUzRJKrkixJKG2KLlsAY9HJZvJk/JqzEzN46lgiPBhicBsRAd4gaDedbYWa+hLo2NMTcYZvxHDH/DQEQnR1dNetfam0r3daDrpnXC/CNEjaJqiK5uZSqOGQzWFSSWWiyb/YB/Is0SPHia0ZwfZiSkSb54nPzWLpCgE997l9t+pEElxijdreSNRB7BtZJ8XSZaXTPD1eAJZUfB2R90+P6qKo1eo76lmWLAaJMlNU3McN0JTq+mpBGrQj+z3wsKCa+GtyDi6uSS9TpJltPY29LkEuZvTSLKMsZBC6+zAzGSZf+Mcejzhnh9Zdnds2+izcbRdOzBT6SWCpvidWrkcjs+PtdiAtN532khdl0DwYaOaaHjsxGGQJP7ur58rpb/lsgXicwvsGxlqybGXT6C27+jl+vVpYjNJfH4Pn/7sUd48/R5X3psEoH+wk0sXx1ZMYu703jgb1QFe8OGm3nW2lsackxMxTr3yDt297STmMxWbDVdiNff2nXK/CNEjaJpyV7ZCbL5pl69KokkLBwjt2VGqLzHTGZJn38ZIp4mfepPkuXfwdEaw9u+ip6cHACUYYDHEs8xZzUHSVLzdnXgibaWIRVFMWXkdSZZcp7ViGttyQVXpb6tm0QRBAknTcGpEe2SvF193J4XkAtgOjmOXtgXJFU2Og9YepuPovSxcuIgky0iKgmPb5CenkSTwRDuQNQ0rk6U8V9fK5sjfnMbb1bFE0HiiESJHDrFw4W0KsQRqA99pM3VdAsGHjWoTi30jQ/T0RshlC24qSjpHxyp75Syn0gTq+rVp/vB//CSGmWNoaABJkhh9d4xtO3rp7YusMFFo9nhbceV3IzvACz683Jycq3udrcUaurjtyP5tVZsNt+IevZPuFyF6BKuinitbLeqJJj2ecJ3ZFMXtReM42LqOXdDJXLmKvmcXvs4OZEVBi4TdFDfTAr8PWZGRfT5Uvw9PpK0UhbIta0kdkplKuxGQ5eYEkgSqgiRJ7rGLkaS1iCBZBhxsBzwBP7ppVowkyT4vWqQNFAVzIX3ruLbtRq+K4sY0sXJ5jLl5HNvB29uFMZfAsSywbKSAD19fN7ZtLYqepZjpNJ2PPLDkfJupDP7BPqJ+jQ7Nh6ctVPM7XV7XVTScCAjHN4GgJq12RSqn2gRK01QGhnrp6enk3bevY1k2d+3qQ5ZlgkHfqvpvbOWV31b2IBEIqtHIdbYWa+jl22bSuSXNhltxj05OxHjj9UvE51Ls2Te45e8XIXoEq6aaK1sj1BJNpfoSvw8sG9nvwynoyF4Ptm5ipjLQ6UYqvNEIlm6geL1YhQKKRyM0spv06JUlgkpWlBV1SEY6hxIIYOE27QTHFSiW7fbxkSgJFklWQJaQvRpWaqWQqIll41g2KDLe3m4cCYy5xNL3yDKK34sxn1wUMzZKWwhrsQGri+Om4jkORjJF7NUz7jmItOPfNuDaVjsga24tlKctTGF6znV/k2U30iTLqOEwgYE+YGm0RvZ5sPbvInD0I8i1jB7KviM1HMLK5pE83hUpcwKBoDLrVTPTiDtTK/pvNLvyu9kiQq3sQSIQVKOR62wtiyC1tm3kHi3elx3R0Io+PXBLNMXjKaZuxrFsi5H927b0/SJEj+C2UU00lepLCgVQZNfRTVOxCzpyyFdKyyqPGFm5fEngtN8zQtu+XUsElR5PIMkyhZk51PY2HL2ArMpooQCB4X70eAIjsYCVyyEpilvrY5o4hgmKgqTIaJE2PL1dpN+9ArLkvtZM9MeysXUDLdKOEU/gqhCpZL5gZvP4+rpxDBMjkcTX2YHU30NuahYrm3OjQ8W6IAcwLcxkGjtXQPb78bQF6fjI3SihIIk3z2OksiheDUvHFT6OhONYIEmo4eCKaI2RSi+JpNVCDQexdYPMB9dLf9Pa2xqu6xIIPuysR81MtUlQ/0AnMzMzpfcduvcuTr82uupIUzORks0YEVrPaJtAUKR/oLOh62wtiyDVtq13jy65L8M+nvjUIU78Vk9pv+Wiac/eQWzTZmY6gaJMEI2GefijB0sOcVvpvhGiR7DpKBczsteDZVrIHg+y10No986SZTVUjxgtF1TZiSmsfB59PgkzMdRQkPbDB8mPTeLoOv7+HjeNzjQJ7hjCLujkp2M4poWkyHj7urENk/SlD9w0Mhs3EtRkxpuVz2MX9EUXNs2NMC06xUmShBFP4u3pxC4UcGwbp2AQ6O9B8nhIvfsejmW7KW5F8wXbxjEtrHQGy6uRGr1C5P57Gfj8E5ipDAuXP2D2pVOL43QACVvXAdf9rjCXQAsHsQ3DFTKL0RrqiB6XRVOFUuZf69zuBIIPG62KhtRyZ/rFi+d45sevk0nnUVSZY8cP8PiTR5o+XqORks1cC/BhcagT3F4avc7WsghSadta9+iK+zKW5I3Tlzh4914Gh7qBlaJp34FhFFXm87/zMKZp8etfvcNPnztDMOTj+CMH2Tcy3PB9tNZn3dTNOj0RayBEj2BTUi5mbMtCVhTkUICEUcfyuQLFiIYWDoKioM/OYaTSZN+/gW+wF312bjEVzoe3swPbMCnE5l1xI0lIqkpheg5nsf5H9mhuI9BVdA0vzC7ux3ZwCq74KDZDtS0bu5DBzOWRVZXQ/j10HDpAdnKKhQsXS+piiducLLvCSVo0diizow5sH8RYSCErKni0ks21XdCZO/Umqfc+QJ+bR5+bR/Z6UEJBiIZWNC+thJnKIHs8BO/a5kaRFAUzlRHpbQLBKmh1NKTSJCg+t8AzJ19fIkAunP+Ax588sqr911rBLk5qZmcTm7p25k53qBNsDpZfZ/Um/a1YAKl1j7594erS+7KrnXw+TXwuVRI9lURTRzTMtu09/M13nqWgm/T2RRi7McPffOdZ+gaiRKPhus+utT7rXnrhLD94+qVVnRMQokewiVkerbFtG8pSNKAxB7Fb9SdBrKkYsseDY1k4pok+O0fXo8eQFQU1HGTh0vvMvvSqawAg4UZ/crlbQQxJQgr6XUe1ZkWP7DZLtXM5bEdZTDnjVoqcsShmTBPbMkmceQvF7yM/NomsqfiHB8iP33QFV3Gb4hgcV1C17b1rZX8dWUJWVWSPB1vXcRyH1HsfYKazSF4PjmFg5/JYBR3LqzDz/C/RDx+k61j1yVAxBdHR9VXZlgsEApf1joZMTsSYiy1wc2qWbDrP8PbWCJBqK9jlkxrTtFhYyCIrMkPDXVu6FkAgaAX1Jv2tXACpdo+uEDSxJJ1djdUaXTj3AZffm0BVFaYm5zAMC9tx6Oxsw7bturV9a3nWlbZfQ1aJED2CLYkeT5CbmCJ+6gyyptR0ECtZZCcXcCwTZBlZU1HbXXc3WVEIbB8k8dYoCxcuum5wAKoGhr40a8txsNPNGRlIHg3F58XOFzAzWajUF2g5Dti5PPHXzuBpb8fX141sGDA8QG5yGidfWFFPZGVy5KdmUUOBkvjwD/bh6YhgJBdKn0sNBXEWG69qwQC2bmCmM24rH8siH5tl5me/AqgqfNZqWy4QCFzW00msOIHKZvL09gfJ5fSWFu+X1w8UKU5qVFXh2rVp8jmdRCJNfG6BwaEuUTsj+NBSb9K/HgsglaKZKwRNyMcDD47QP9C55H3LRRPA09/9JbIio2oyhm6SzuSItAfxB7z4/Z6az661PuuK2/f0ta3qXIAQPYItSPLtSyTPXEBPpDCSC/gGetFkGcnjRY/NkZuYWjL5Lk7Q46fexLZsJAe83Z04eqEUnSimwDmmieJRsRUJWzduCR6P5hoJNBrdkSWUUAi1LYQ3EEaWJfK5GTDNpj6rlc5hqhq5iSnMbA47X8AxTCRNcRuWFlk0RLBNc4n48EQjdH/iOPFTZ7ByORS/n7ZDIyTOvIWZSmPl8zimDY5bpCRJshuNyuZInn2btn27qgqZtdiWCwQCl+Kq6/jYLIGgj2wm35JoSPkEanh7D45TQDcM5uZSJObTdETDDQuQauk2y1elD917F5l0ns7uNt6/chOPR0GWvXR3t+H1evijL53g8JE9a/pcAsFWpd6kfyOt1MsFjeveVjmtvVw0vX3hKpZps3vPANeuTmGYbrZKMOTD7/fUXUhZq2ticfu5+MLqPjRC9Ai2GEYqTe7MBSTHwdsdxUylKUzNuqlqMdfqee7UmziwJM2tOEFPnHuH9OVrroW0ppYEQvb6hJsC196GkUwjy4rbwkd2e9/gOPUFj6KAIiOrKt0ffZC2e/czG58jlDNYePsSucmp5mv9JQlLN133NqRFPwIHx7BKryO7dUeSJNP92MO0L0vvWy5OshNTOJaNY9vYmULR3wAc3GaopunWLZl23RqdtdiWCwQCd1KxfUcvz508jW6YeDSVT332wTVPcpZPoPIFi7nZBTqiYdraAhx/5CCPffK+uvuplm5TaVX69GujKKrM9FQCQzdRNRlNUxna1sNcbAFNu31Tjs1mmy348FE+6QeYmponEPCWJv0bbaVeFDS2bS9xd6w3/tnZBI7jYFsOmqaiqmpDLohrdU0sbi9qegQfGuxcASuv41vst+Pt7SI/OU1hahZJVfH19yBrasU0N080Qs8nHiZy30FyE1OAm/4FbgqcJEuYyQWkgA9rPulaOUcjGAsp7FxtAwVJVVDb27BzeZAkAjuG8HS0U7j8Pvr5UbLjN8F2XHGBdMt62qojpGQZx9DBcVxhYzs4i72DkCQwbbBBVmQi999Lx30HKu6mKE5umToEUNuCZK+OuZ+/vY1CLI5dMLBtG08o6L6nQo1OsZmpiO4IBGtnciLG9WvT7NzVTyDgJZstcP3qFJMTsTVNzssnUP6Al1gsjqzI7NozQC5b4NQr73Ds4QM1j1Er3abSqvTl9yYY2b+Ny5fGMU0313/3nl5y2cJtreXZjLbZgg8fxUn7t/7yh8xMz+M44PVqPP3dl/lXX/0dBga7OP7IQZ5/9o1SNHYzWUMXx/c333kW07IJhf10dIQJhX184fc/xr6R+ml4a3VNfOzEYfoH2/mP/+lrq/oMQvQIthSy3+vW56TSqOEQiqbiiXZgGwa+vm5Uvw/HtlcW85eRnZhaYX4AYOV18jOxxWaeEmo4RHD3TrJXb5A358BYmZom+b04uoHs9eAUdCTNNQyQFQV9PknmylW8yQU3ra1Ug7P4v5KMb1sf+Zsz7jFtx40WLbrGgeNqJCRkj4ZjWdiGiay5/1/2qFiSRWCoj+hDR6oKnnKKpg7erg63qaiqIkng6+pA9nvJ57IoiobWHq5Yo9OIcYRAIGic5eLBtu2WpLSUr6qO3ZjB54PdewYJhwMEg76GjlEr3Wb5qvToxRvMTrsr2AG/l4eO72dubgHTtPB6tdtWy7OZbbMFHz4iHSHSqRw+v4e2cIBsrsBzJ0/z0UfvITGf5tQr72AYFpqm0NnZtsQaejOI9X0jw/QNROnsbFtSx9PdHWkqYrOWe6+vP7rqbYXoEWwptHCI0JFDJM9cuFVAf/Re0qNXcHQdx+up6SSmxxPET72JY5qLTUp14qfeBCTsojBxHLAcrEyWxJm3kBbtnp0KosfJFVyhYjuoHSEUr9tPSA0H0RfSWLlF8wJ7WV6bR8MbjWAupIsmcSWUSBt2Nuc6zNlunyDHKUaE3GiRd6AHO5PDcXI4hkny7FtIirxCgCyPypRMHVJpJI/X3aMDKAqqz4sn4KX3I/cSHOpfIXiWNzOtZhwhEAgaZz1TWoqrqqMXx3j5pTdYSJnYtt3wMWqNrXxVeno6QTy2QE9vB3v2DhKbTZLJ5PkX//On0TT1tqaUbWSdhEBQjxvXZ7Asm86uMLIso2oKc3MpLpy/yoVz77vNQPcNMj4W41e/fIudu/o2lViPdoaJRsPYtt1QHU8tbkfKqRA9gi1H+937CA71L53Mh4IVncSWT/oT594hd3MGWZExkmm0zghWNg+2hZXJuQqgWN9SjLgU7Kq1OJKquE1GAX0+ibcrSmjvMOCmzOE42LqJJMtLa4JsGyOVxs7mSz1yrHQWxzSxMjkkx3GPqSgoXi/gYBsmWnub675mOVj5Ap4O19mtkgCpFpUpuq6ZqTRaexvguH13fB7CI7tov3sfsiyv+KzlUSJJllHDoZoRNYFAUJ+15rk3sv++/iimmeX55y40dYxaY/vB917m+WffIJt1nSSDQR/79g8tERaapnL3oZ0t+RyrZaPrJASCWmzb3oPHozI/ny6ls3o0lVDIt0ScBwJedN0kEPQhyzL+gJcb12e4NDp+W0VPq55XtyvlVIgewZZDn09ip7NLakoqNTONvXqG9OiV0qQ/NLKb9OVrrgCRZRzHoTAdwxON4FgytpECWYJiQMd2cEzTTTKTpYpjkQMBJNvG29uFPpfAsWxSl94ne32M9iOH8PX3YF6dABx3H8WIj+NgF22nFRlZkiAUwEwkwbLcyI6D68im6Miq21g0evQwkfsOkL58jfjps/j6uisKkFpRmeXGBrDYbLRO89fyKJHozSMQtI615rk3wqH7dnHw7r3Mx9NNHaPS2H7wvZfdvH7Txh/wEAz4yGTyjI/FNl0/nvUWlQJBMxw+soeD9+zgtVMXyaTzyLLMsYf3c+zhA5x65Z2SOM9mC3g8KtlMnvGczpXLk9iWzdP/7ZfgOLctzW1yIkZ3T4Q/+tKJVUdxb2fKqRA9gi1F+to4uYvvY1eoKfFEI6V6HSOVxUgkUdvDBAZ6MVNpkmffxioYqJE2rIU0jm3h2DZtB/Yi+73M/PSXWPllKWy2A4pEYHiQ3OQUTkG/9ZrimgxIHg+2bmAbBh5vG57ORZFx5gL+wwfQu69jJhZcC+wijlMSQHY2j64bSA6LzUqXmhvYpokWjeD1eYncdwBPNEJozw4W3r1UVYDUi8osd13zRCMVm7+W44lGCI3sJnn2bYx0Di0cEL15BIIWsdY890boH+gsdVxvhvKxTU7EeP7ZNzAtm45okELBIJPNEwh6MQ1zUwqLjRCVAkEjTE7EyGULDG/rxuf1ICsS9uJcYLk4//RnjzJ6cYz3RseRFZm9I8N4PMptS3OrFJ1ZTST3dqacCtEj2DIUjQHaqtSUlEc3tHAAPT6PlcliGyZqOEQ+FndTyBad0NSAH60tTOS+A2QnplBCISwj4aahSa4NtGNbyKqKrMgoPi+Wgyt2CgWwbOyCgaxpSLKMEvDj6bwlMvKxeTRZpufER4m99CqFmRiOYyMpMpKm3XKEkyQ3ulP+YSXpVqGPaSEh0Xn8/iUpe6GR3aRHr1RsDroeUZnEW6Nu7ZRlI6sKoZHdK+yxBQLB5uXm5FzDkZ5q+fbxuRSGYeH3eyjkDbw+jfn5DH19vfzL//Vzt72GpxobISoFgnr87CdnuPzeBKqqkPUUGB7uJpPJE59LVRTnL714lr/765+wbUcP4XCgZUYnzdLK6MztTDkVokewZTBTGWzdFTCVohfl0Q3bMNxeMwUdWzcwUmnMVBYc2+1RY5gYpknnIw8AkHjzPN6ONjwdbWSvT+A4Dr6+bgozc0iyjO042LqB7NWQkHBUxTVDCIdR/V6ix+8nefatFSJD9ntp33UXWijIxA+eQU+mcEwbx8iD4+DfPojq92Hl8hgZt/molc7cEjwSoKoEd2/HP9i3ok4nNLKbwEDfCvvoVkdlygVlsYYoPXqlZvNSgUCwebhw7n2ef+4CmVT9HPpa+fbRzjDRzjCWbZGYz5CYz6AqMk9+5oGmG4+K3jmCDxOTEzFOvz6KrMiommtQdOXKJLt29Zcm/MvF+b6RYXp6IyXb91oCYT3vp1ZGZ25nyqkQPYItgxoOIntUzFQGrUL0Ynl0Qw34MUwLM5XGsd3cMUlTcRwDLAfHMNHnEitSwewBk/zNGRzdwNMRwTYNzGQaSQLF68HOF5BkGdnrxdfrCgBZkQlsHyJ9+Vop8hI5cog0kL0xCeA2RC02OgVQFde9JeQaHih+H3g0Um9dKrNzk5BlmfR7V8lcuY5jmXgibaVIV7nwKDdtyE5MtTQqs/wcSR4vemyO3MSUED0CwSbn5uQcb5y+1NAqbb0V3fIJi6IoaKrCE58+yu988aNNjUn0zhF82IjPpbBMm917Bhi7MYthmNiWzdFjI2tu6Fl+PymKzNGHRnj8ySMtExKtjs48duIwkY4QN67PsG17T9MLJqtFiB7BlsHT0U5w9064+H7FlC5PNFJyJivE5tHaw0QfPIx/oI/s5BTTP/kFdsFAkiUcRQHbJvP+NdoO7FnR+8ff30P7of0U4gmyV8dwTBNCIQBsy0ZywNvdiaMXsHWDuVNv4tgOkiwR2reLjvsOkBm/Sfz1sxRSeRzdwEhnUAI+ZFXFNk1s3cAqGKXPEh7ZTWr0Ct6eToyFNLZhgm0j+7xYuRxWLo9jWsg+r+viVhbpKu89JMkSVl5HCwdaFpUpF5SWaVGYmsWxbfdzg+jVIxBsYuJzKQo5g66u9rqrtI2s6K61Rkb0zhF8GCkKB8dxuPvQDmam5vF4NR5/4kjN7Wrdb5MTMS6NjvH0917G69VQVYUrVya5/N4Ep18f5Qu/97GWLCa0OjqzfNEjMZ8W7m0CwXJCO4aI7Nm1wr2tyHJnsvIal7lX3kCPJ3Dckh0knwckGVlRloglxefBN9hH8sIouZvTSLKMt7cLTVOxDZPwvrvIT0zjWPaiF4GDrKmltLbc9TGCO4ZInLkAqoS3K0J+csaN8uDWCkm2g6TYRI/ei38xPc1MZUice5fA8AC2YWIkF8hNTOOYJrKqogT8mAtpCtMxtLY2HL2A4vNgW9YSp7bCTAx9PrGkvqgojoAV56YRioIyfuoM+cVz4uvvQdZU0atHIGgh65GiEu0M4/VrxGJJurpqr9I2uqK7lhoZ0TtHcKfQzP1aLhzmYgu0tQcbFg6V7reicJiZTjA9Nc+2HT3MziTxeBRMU0IvGC1dTGiVIYhwbxMImsDT0Y7c2bHi7+XpXYHtg0u3iUbofOQBZn76SxzLRlJVFJ8XxauV3l9ueR375atY+fxi3x4JYy6Bum0Ap2AQuWc/9oG96LNxHNsice7dFXVG+mwcM52FaBjbsPB0RinE4jimiZ13cBz3c4SXRV/KI06SJLlNUU0bfCqSaSJ7PWA76LE5tPYwHfffi6woS53a2ttgNo6ZXEDxdpbSALOTU0ssvMud7xohcs8IEjD9wit4u6Oofh+ObYtePQJBi1ivlK/+gU4eOLqvZp+e8snbeufbi945gjuB1dyv6yUcZmeTXLs6jSLLeH0qmqbS09fBXGyhqcWESiKu0t/icymAVY1fuLcJBGukWiPOcrqOuSHkuVdOY6QyOFkb2eslu1iXUvwve32CwlwCO1/AMUxs08RRFFdEBPxLxIMkS9i6scLAQE+l0OeTFIw8mbyJGgzg7epEUmSsfAFZU4kevW+F+UAxmpKbmELx+2m7Zx+pdy9jZXPIHg1PpA3F76Pz+P34y1zrysWSo+t4OtqRVHVF6lylvj3NiBX/YB+eSBhH13G8HtGrRyBoEeu9+jk03M1nPvsQkuQWR5fvs9Lk7Wt/+sV1K4oWvXMEW51a92tff7Tmtq1wElwuHHbvHmD04g0Mw0SSJXbv6S2ZHzSymBCfW+D5Z85x+rVLWJZdeg4AS54N23f0cv3a9JoWZoR7m0CwBmo14lw+oW/bt4uFC6OogQBqu5sitvy9tmVhZXPgOMgBH1Ymh22bOA4lm+jyY1n5ArZhrRAYWlsISQZbz2GaKXoedwt9k2ffwbEsUqNXUELBCtEWZ9HHwCG8bxf+wT6SZ9/GNu2SC1u5KcHyWibF56HnEw/jL0vzK6bOVevb0yiVjiV69QgEa2c9Vz9/8eI5Xn31HOPXkwSCPnBYsopbbfK2mh4cjSJ65wi2MrXu13qipxUsFw4er8q+kWGGhru5dPEGmUwerzfc0GLCL148x8u/fJNXX7mCtCigHMfh6e+9DA54fRrbdvQwPhbjuZOn2bmrb00LM8K9TSBYA/UacS5/r2PbeHs6kWQZx6uteK+sKChBP3ZBB8tGCfiRVZXuRx9CawuTXCYerIJB5/EjaG3hJQLDP9hLwTYJhsOYqSxaKMj8m+cXIyOhkjhTgwFkRSnV5siaSmCor/T6wOefoG3frpq1ONVqmaqlzhUjNLZlkb0+gRoOokbaGjrf1Y4lEAhWz3qtfk5OxHjm5OtEo16Gt6+cqNzOVBPRO0ewVbndKZqVhMPIgWGuXZ1GUmQ0VeH4Iwd57JP31dxP8fng84GqKSiKzNjYLHcf2sHsbBIc2D+8DVmWCQS86LpJIOir+Kxopr7pdi16CNEj2PI004izkfeq4SDeaARLN1C8XqxCAcWj4R/sAyqLByUYwFhIYSykUIKBxfdkkNqC4BTQwgGAFeIs9f4NJv/788iqiqTImLk8wW2DK8RbYPtgXXFRTM+r9tryCI2nu3OxdslNCWw/cgh6VtZKNXssgUDQPOu1+hmfS5FN59m+s4Ns2lkxUVmPyZvovyO40yner09/92UuvnODtrYAX/iDRxkY7MK27Q0ZQ7lwMAyTf/j7F3Achz17B4nNJjn1yjsce/hAzXuw+Hzo6180a7JtDMNkeipBW1sAHErPhmy2gMejks3ksaPhJc+K1dQ33Y5FD3m9dnzt2jX++I//mJ07d+L3+9m1axf/5t/8G3RdX69DCj6kFCf0SBKF2DxI0pKUKz2eIHt9Aj2eqPve8v0pHg0rl0fxaKX3VNre093JzR+/wPgPnmX8B89y88c/w9Pd6RogLKRLx1CCAXAcCvEEjm2TuT6BubCAMb/gNk/NFbAyudLrjdbLlH++WkTuGWHg80/Q/+lP0PXoMfTZuVKaHo5D4swFjFR6jd+GQLB52ey/S4+dOMwffekEn/rMUf7oSyfqrtI2QrQzTCDkI5XMYtv2ClFTnLxJksSN6zNIkrRmK9pvfuP7/NVf/pBvfuP7vPTC2TV/BoFg0yKV/W+pv97GMTDYxd2HdqJpKpl0nq5u15beH/AyM5Pg0uh4ze2Lzwe9YDC8rRtdt9ALBoZu8IkTH+ELv/+x0rPB7/fw6c8exe/3LnlWAEtSZB3H4eSPXmNyIrYRp6Ap1i3SMzo6im3b/Kf/9J/YvXs3b7/9Nl/5ylfIZDL8u3/379brsIIPKdVSrqoZHNRLz6r1nvLXbMti5me/wkguIGsqIGEkU+Qnpug68VHkTJrewQHyk9PEfvkqZjaHlc1hJBewMjkkRUEJBcA0sQsF153Nshuul6ll4FDuZlee7lY0a1gedcrH5pFzhdZ8IQLBJmSz/y6tR++KgcEuPvPUg7z66jnGbswQCKyMIN0JVrQCwUZSvNa9Xo39B7c1ZWSwHpRHbHXd5MrlSWzL5un/9ktwnKrPkfLng2ladERDWJaNrMiceuXtiqYmyyO5b1+4umUs6NdN9Dz55JM8+eSTpX/fddddXLp0iW9/+9ub4sdFcOexPOWqnsHBWtPFSuIhlwNA9ngAsPMWZjaPrCh4ezoBSuMIbh9En5vHzOWRQgq2oYNpgqpiZ7L4ervpffLjyIpSt16m1ucrb1Zayc2uWpqfbdtkb0ziaQuJ9DXBHcdm/l1aT8Hw8U/eR99ACMtU6exqq7i/VjtK5XI6siwTn2vOMlcg2Aq02shgrSmhpXS7773M5UsTyIrM3pFhPB6Fkz96jUhHCE1TK+6/+HyYupnhB999Ga9PK6W6VjI1Wf6sWG2K7O1Ig93Qmp5kMkk0uvEKWPDhYHlkoxmDg9WihoMofj/GQhpb1wEJxwE14HPT0ozCinF4Ojuwbs6ieBVsXcHM5rCzbtSn/fBBQndta+jY1T5fblHw1HKzq1jj0xUl9vYoViqPuoo+PgLBVmSz/C6tt6FAtLONnh5335VoxQSkOPm59O4Y84k0uayOqspcGh1bVyc4gWCjaWUtXDP1MLXu08dOHAYJ/u6vf8K2HT2EwwFs2+bCuQ/49rd+hCzLVfcf7WzDMlUsyy6lyDX6DFpNPeJ69SSrx4aJnitXrvCtb32r5mpaoVCgULiVXrOwsACAbdsbVhi2FmzbxnGcLTFWuLPGm3z7EokzF25FNo4cwj/Yh+zzYKTSJVc12edBDgVa9pnVSBsdxz7CzAu/wkgsABKezggdx46gtofRP4ih5wyQpSXjUMMBQvt2kb70Po6soKkykfsOEn3wcMNjk0OBip/PdhzMvI63KwKyhBIOUogl0BfSSxza2g7uxTfQe6sh68uv4agSnq52rFSW+TfP4xvoxdPR3pJz1WrupOt3M7JVxrkWGvldgo35beqIhgiGfcRiSbq62onFkgRDPjqioTUfw7Zt5mJJZqYydHa10T/QueT1X7x4jmdOvk42nScQ8vGZpx7k4w3UE92cnCtNwPoHOunrj3L8kQP87X96DsuyCQQ9RDqCnPr1Ozx0fP+K49Ya71a7V8R414/NON6+/iif+eyDPHPydTdtNOjjM599iL7+aFPjvTk5x8kfv4bDYoQ3luTkj19j78jQqu7TvfuG6OmLkMu5PXomxmMsJDN0doUZHOquuP/ieNfyDHr0E/eyd2RoyfOg2jbNfOZKrOU6aFr0/Nmf/Rnf+MY3ar7n4sWLjIzcWiGemJjgySef5Itf/CJf+cpXqm73F3/xF/z5n//5ir/Pzs5umkLTWti2TTKZxHGcqqtpm4k7ZbxGKk38wtugSijdEaxcjoULbxP1a1j7d5G5chU7lUb2qIR27yRhFGBmpu7xjFQaO1dA9nvRwqGq70tnM+SiYSy/B0lR8OzdSaGng7k3zzJ79Tq+nIHtmDh5HdkyUfxeQrt3Yu0YQu2OIC8ewwyHmGlgXOVU+nxpv0Ym7COTz6H4/Vj5HIR9zBt50pX271MpzCRJOjZ6IMiCJEFbEGMhjTwxidfYnHU+d8r1u1lJJpO3ewgNs56/S7Axv02KCk986hBvnL5EPp+ms8vHAw+OoKhW08+F5Vw4+z6jlz4gNpPF69N44Og+Dt23C3CbEr766jmiUS/bd3aQSmZ59dVz9A2EiHZWt7G/cO593jh9iULOwOu/tc+hbRHuPTxMuD2Ax6Ph8arEZpKMj0+iqFZD491q94oY7/qyWcd74J4B+gY+SSqVIxz2E+1sY2Zmpqnxjo9PEwzIdPW2I0syobZoxful0ft0+XOkI+rB6+1jx66+qvsvjre9vX1NzyBFhe7eAFD7/Y1+5mqs5bepadHzta99jS9/+cs133PXXXeV/v/k5CSPPfYYx48f56//+q9rbvf1r3+dr371q6V/LywsMDw8THd3N5FIpNmhbji2bSNJEt3d3ZvqxqzGnTLebN6kkMrj7YogSTKOz08hlqBD8xE4+hH0PWU9bhqMWiTfvkSuLHIUOnKI9rv3rXifPp8kd/F92h0JtasTM5WBqxMEhofJXvwAvyoRNG30mQSOZeGJdtBxcITOox9xd9DT09Q50OeTSz5LT09Pxc8Xyhlu5Gs2sRj5uof2XXdV36/mxTrzNgvZPG0+H1YqC5JM7+DApo703AnX72bFs1ijthVYz98l2LjfphO/1cPBu/cuWS1dKzcn53j++QtEO7z4fCFisSTPP3eBg3fvpX+gk9npLOPXkwxv7yGbdpAkL2M3ZrBMlZ4qz6ebk3M8/9wFHMcprQgX9zk0NIBuyMRmc3R1eZiciCNJEkNDA/T0NPZ5JidiJBMFwiGVvr6u0jFbeV5ayVa7t8V4W0ele6SZ8VqmQiZrk/4gXrqXKt0vzdyn5c8RwzD5x//7RS69O4U/6COXyePze5fsv3y8J36rr+XPoNV+5mqs5bepadHT3d1Nd3d3Q++dmJjgscce48iRI/xf/9f/VffL93q9eL3eFX+XZXnTXejVkCRJjHcdqTReT1sI1efBSmXcZqGpDKrPg6cthCzL+Do7oLOx/jPg1gYlz1xAchx8izUxyTMXCA71r6gFstNZ7LK6Gq1YNxSbx87ryJEQ5twMsiKDBIoqk3prFE84hL+sxqYRqjm1+To70CUJM5XBlCQ80Qgdh/YTHOpvuIGor7ODjiOHSF14Gz2WRF10jvM1cd5uB3fC9btZ2QpjLLKev0uwsb9Ng0PdDA419lkaYT6eJpvKs33HYp+eLjdPfz6eZnCom86uNgLBpbUJgYCPzq620mdbXkcwH0+TSZXVH5Xt8+5DO3nqs8vy+z93rOHP9NILZzn549cIBmQyWZunPvsQ4FrixudSaJrCE59+gN/9vY+17By1gq10b4MY73rT6HgHh7obul9q3adTN+Mr6nzKnyOvvPw2z508jW6YeDSVT332wRX7Lx9vq59Bq/3M1VjLNbBuNT0TExN8/OMfZ/v27fy7f/fvmJ2dLb3W19e3XocVfAipVJRfz+q5Fs0YIFRzQfN0R1F8HqxsFsUwkRUFSVGxHdBvzjDz4ito7eGGzQJW49RWdJgr9vGpJ37a795H1K/RofmEe5vgjuTD+LtU3qdHkrzEZpOYpsVLL57j0ugYxx4+ULMIuVLB8b79w1WLuCcnYnT3RPijL52o6hZVjZKDHQ5dve2kP4jz9HdfBglSqSyJ+Qy5nM7ffOdZgE0nfASC1dCIZXw1s4BLF8dqGgJMTsS4fm2anbv6CQS8ZLMFrl+dYnIidlsdFVtlk98s6yZ6fvazn3HlyhWuXLnC0NDQktec29DASXBn00jvnUapJmQqNQmtJrhCd23DSGdI/uY8jm3jAGo0ghFPuA5uXZ04emGFq1o1VuvUVquPTzl63DU6AAhsG9gyq2kCQTNs9O/S7bBkXc7yPj1TN+eJz6W4+M4NJAn+4e87+Ff/n99e0YujOP5qNtqNTsCacW1b4mAnuRGki+/cwNBNsrkCEtDREWR+PsPzz75Rt9u8QLBVaMQyfrlQAPjmN75f0+Z+uSukbdubpodOK2zym2XdRM+Xv/zlujnWAkEraaT3TqP7aSZyVE1wtd+9j06/hjY8TfbKVcxsHse28Q/0ovq9OF6tYQvtakIMqBqVAupaV8OttDkzr5MJ+wjlDDoO7V/raRQINh0b+bt0uyxZK1Hsw3HxnSm+/Vc/xrIsVE3Bth1mZxL84395kf/vX3x5hUCpZaO9mglYPUo2wLGkW9wcS9LWFiCTzjEXT9HREaRQMPD7PZimtSkmboIPNxu9sFEuFBppCtpKa+07AbGcKxBUIHLPCAOff4L+T3+Cgc8/QXudFDRPNEJg++AK8aKFQ/Q8doyhLz5F74lH8Pf3IqsKjm3XjCBV2n/k/ntBkijE5kGS6Lj/XvyDfSUxtHyfxeiQGg6VBJGV10uCCJanzUXAcUicuYAeT6zirAkEAlgZIXEch5M/eo3JidiGj+PtC1e5OTlHtLMNVZUxDQtZltFUBY+mAA6JRIb4XGrF9uUTJtu2V0yYBga7uPvQTgYGu0oCqbzHRyaTr7jfahRTeCRJIjbjFjd/4Q8e5bP/7DiqIjM/n8FxoKMjTEc0/KGduAk2By+9cJZvfuP7/NVf/pBvfuP7vPTC2Q09fr37E5beUzeuzyBJUil9tfz58GFhQ5uTCgRbiVZFjsr35UDNCFJ5g1VgSfSoWkSpVlSqXppeedocsuRaXM8mWtrAVSD4sLHejUYbYUmkKezjiU8dYnhbDx6vSjaTxzAtbNsBJCKRYEUB0UzTwVatKD924jB7R4YYH59kaGhgSXHz88++gWladETDdZsfCgTryfKFjfGxWf7rP/ycSEeIew/vatkxVlPnU6lp6fL6mUrPhxO/1Zyb7FZEiB6BYAMJDPYhLf7/5e5t5fU3tq4DErJHq2hOUE41MdRIml552pwSDmLlcw1HnwQCQWVud0rJilqcWJI3Tl/iy//TXp763EP89386RT6vI0nQ3dvBH37pRFUB0UjBcXFydvyRg5x65Z2Gu7JXo3+gE0W1ltjX/u7vfYxjDx+47TVSAgEsXdi4ORlnfCxGJpPn29/6EX/wh49x4J6BNe2/0fTYRg0BytPiqj0fDt69d11d2zYDQvQIPtSUR1bWO7Kx3FTAgdIxy9PM1HCQzAduuDl41/aGDA+qRaXqGTwsFUYJCPuIHLlHRHkEgjXQTIRkPbg0OsbMdGKJpXQ+nyY+l+JfffV3+Oij93Dh/FVCIV9DZgC1Co6XT86OP3KQfSPD6yJMbkfhs0BQieLCxvjYLONjMXTdIBj0oWoqz5x8nb6BT1btc1WPWgYi1SI+zdwXKyLRZc8HIXoEgjuURp3NWkEty2lPNLIkzczK5pAkcBzAsmpaZjdCvTS9ojDSF9LMG/maTUwFAkFj3C5L1pdeOMvT33uZ6al5ZmeT7N49gMen0tl1K9J0+MgeDh/Zs+ZjVZqcnXrlHeGqJrjjKS5s/Nd/+DmZTJ5g0MeOnX2E2/yMXZ9hfHyWkf27V7Xv9U6PXRGJjiWXPB/uZISRgeBDyXIRguOQePP8uhXw1zMVKE8zQ1EouecqSlOGB6vFE40Q2DaAFg6t2zEEgg8b5YX+G0FRhHi9GntHXEvu9y6No+cNHnhwpOXd1RsxLygWS6/WxGGt2wtuL3fy9/fYicP8y//1c+za1c/QcDe2ZXPmjctMT81z6lfv8IsXz61qv40YFKyFSuYG6/F82IyISI/gQ0kzDUhbgW1Z4DgU4gm80cgKIVOeZmamMmjtYUAqvW8tzVYFAsGHg+UrxO2RIDeuz/A7v/cxDtzdX3Pb1VjvLl8xHh+LYVs2hmECa7ft/sWL53jmx69vCttvQfNsJtv29eLwkT38v/7oEzz93Zd579I4siKzd2QIbTHNbeTAtqYXPTYiPbY8Et0RDaGoVsv2vZkRokew6diIOptmGpCuleTbl0ieuYCZzWFlc5jpDN5oZIWQWV5/A2xYvZFAINgcrKXvx3IRkssW6OmJsG9kCKg+qVnt5LR8cnbh3AckExna24P8w9+/wAfv3+TUK++sum9PfG6BZ06+vqa+P4LbR7N1KVuZx04cBkni7/76Obbt6CEcDhAISYyPJVedkrYR6bHFWiDbtpmZmWn5/jcjQvQINhUbVWfTbAPS1WKk0uTOXEByHILbB9Hn5nFsm65HjxG6a1vFcZWPYbXjqSQcN9K0QSAQNM9aV8arrRD3D3RWnNRMTsS4NDrO0999Ga9PW9Xk9LETh4l0hPj2t35EtDPM0HA3sdkkzz/7BoZhsWff4KrqElKpHNl0nuHtt8/2W7B6Ntq2faObhC5n38gQPb0RctkCwaCPVLJAYI0pacXPUUwXFdf92hGiR7BpqFfs32rqOZu1AjtXwMrr+BbT6DydHRRi88iK0vJjFakkHIENM20QCATN06qV8UorxBPjs4yPT2OZSsmdqSiwZqYTTE/Ns3ff0Konp5qmIssyQ8PdpX0k5tNomrJq2+5w2E9AdJLfsmykbXuziwXrIZDKFxzGbswwtK2dz3z2oTXt/8OQHrjRCNEj2DRsdJ0NrL4BaaNRE9nv3bA0uuK4lgvH+Kk3AQlZUzZETAoEguZpdmW81sSt3ML2pRfOcvLHrxEMyGSyNk999iH27R/m6e+9jF4w6O5pZ3Y2yZUrk7R3BEsr1c1MTitNcDui4TX17Yl2tvGZpx7kmR+/fltsvwVrY6Ns25tdLFhPIVFccJiLLaCo5qrd26Cxz3W7o1tbESF6BJuGjayzWQvNpOBp4RChI4dInrmwrml0RSoJx+z4FJIEnmhfQ2JSn09ip7MiDU4g2ECaWRlvdOJWmjjh0NXbTvqDOCd/9BpvvXWVy5cmUDUFbSZJNBomNpvkxrUZenojTU1OazUmfeyT91VtKNrIhO3jn7yPkQPbxMRui7IRdSnNLBZsRJ3RwGAXff3RNdfI1Ptcmy0KtFUEmBA9gk3DRtXZrIXVpOC1372P4FD/htTTVBKOasBH0QmunphMXxsnd/F9bJEGJxA0xVp/9BtdGW9m4rZk4iS5TQgvvzdBLLaArMioqozj2MTjKbbt6OEP/8dPsm+k8QlgI41JKzVObGbCJhqSbm3W+/trZrFgo+qMbk7OrUgnrUWlZ8et5qcxAgEv2bII7GYzidhsAqwWQvQINhUbUWezFlabgrfaNLpmqSQcO4/fjwN1xaQ+nyRz5SptG1RTJRDcKbTqR7+RlfFmJm6lCWEsSagtSiyWRFMVDNNi9+4BxsZmMQwT27L56KOHeOyTjY95tY1JN2rCtlVWngVro5k0uo2oM6qUTlrrWVDt2TEw2MX2Hb08d/I0um7i8ah87OOHiM+lmJ1Ntky8TU7ESul4PT09TW0Xn0thGOamEmD1EKJHsOnYKIGwGrZCCl414VhPTJqpDLZuLmmgut41VQLBVqfVk/h6K+PNTNxKE8Ifv0ZsJokkSTzx6aOceuVtHMfh7kM7mJ5K4PWoPP7ER5oa52pXzRvZrtmV8uVspZVnwdppNI1uveuMqqWTFp8Fy4V4rWcHwPVr0+zc1Ucg6GNibJaXf3GB994bJ+D3kssVqj4DGhX8xfskm8kztL2dY8fSfOLx+s+B8vvLtm0WFrIcuu+uhtILb/dChBA9AkETbIUUPKgsHOuJSTUcRPaobnPUTSroBILNxkZb8zY7cXvsxGH2jgwxPj7J0NAAg0PdRKMhTv7oNeZiC7S3B1Y18Vvtqnm97ZpdKV/OZkv9EWwMjabRtaLOqNrkvVI6afFZcOni2Aoh3t0TqfrsAEqv5XI6mUwB07Lp7GzDtm3S6TwLySyzM0na2gJ84Q8ebarWp/w+Gd7eg+MUGmqmuvz+Gh+bJZnIMD4WY2i4q+pzYLMsRAjRIxA0yWZPwVstno52grt3wsX3N7WgEwg2ExtpzVuk1sSt0oSsf6ATRbXo6emsu32jFMXX0997mYvv3nAnXr//aN191RJt9VbKG2GjRahg67GWOqNak/dK6aTBoK9qCtgffelEzWdH8TVdN0mncvj9HvwBL36/h8mJOZA0d1AS4Dirr/eTZQKhQEPNVJdvNzTczdxcCtMwqy7CbKaFCCF6BIJVsJlT8NZCaMcQkT27hHubQNAgG2XNW+m4rTAImJyI8faFqxXFT0PpKE75f05DY68mumqtlDdudd2cCN0MKTeCrcHkRIynv/syBd2kt89tRFo+ea+UTvrU546haWpFIa5pas2Fg6c+9xD/+W9/ysT4LLpugATzcynmHIdkIsPOXX2lZsAnf/QaSDRf77d4nzTaTLXS/TU01MUffekEmqZWvI8200KEED0CgWAJno525M6O2z0MgWDLsBHWvPWotZra1x+tuE0tkVRPQBWP5/Vp7B/e1vTqbSXRVm2lvJmoWTMidLOk3GwFhDiEn/3kDJffm0BVFWZnEgwPd2Na1pLJe6V00smJWFUhPjuTqLpwsG//MKGwj5139eEA42Mx3rs0Tv9gJ+3twSXNgG9cnwGk5uv9mmymWu3+OnxkT9Vtbkc0vBpC9AgEAoFAsEZut7VyrdXUSqKnmkiKdIRIJNI8/b2X8Xq1quko67F6W22lvNn9NSJCN1PKzWZnvcXhegmqVu53ciLG6ddHXat3zbV6v3Jlkl27+ldM3penk1YTCkDNhYP4XArLtNm5qx9Zlunt6+DG9Rk+99vHOPXKOytExL6RIXCaq/dbTTPVZhd5blc0vBJC9AgEAoFAsMVpdjW1kmg5f+4Dvv2tH5HL6UxPzbN3ZAhZlvEHvNy4NsOl0bEVfURavXpbaaV8NdQToZsp5WYzsxZx2IjoWC9B1er9FgXI7j0DjN24ZfV+9NjIqg0U3r5wteY1uPwey2UL9PREOPbwAaLRcEURMTDY1bQgWU0z1WYXeTZDNByE6BEI7kj0eOKOM1oQCATVqbWaatv2ivcvn1CNj82ykMjQ2dnGtt4Is7NJrlyepJA3GBubxbZsnv7uy+BQ6iPSaDPVZic6y1fK14PNlHKzmVmtOGxEdKxXtG099lu8XopW7zNT83i8Go8/caThfSwXCvWuwVpmIc2Km83A7Y6GgxA9AsEdR+KtURJvnsfK6yg+D5H77yVyz8jtHpZAIFhnHjtxmEhHiBvXZ9i2vadmnv1y0WJbNu2REEPDXciyzO7dA4xevMH7VybxeDX2jgzh8ahLJo/1Vm9bsdq+XqlPmynlZjOzGnHYqOhYr2jbuqZeLlq9t7UH13y9NHwNVqn5WauZyYcRIXoEgjsIPZ4g8eZ5cBy8XR2YqTSJN88TGOwTER+B4A5n+YQnMZ+uauQvBAAAVVxJREFUOeEpFy2GYfIPf/9CaXLr8aoMDndTyOvs2jNAOBzAtm0uvzfBG69f4oEHb026ihOvcoECrHm1/f95+lc8/+ybGIZFtDPc8gncZkm52cysRhw2KjoaFVTNNqtdz9TLVl8v9eznmzELOXvmMv/1H36OqqmiTq0KQvQIBHcQZiqDldfxdnUgyTJqOEQhNo+ZygjRIxC0mIvvXGf7DnNTTChW494GS1eLE/PpJZPbz/+zY/z6V++QyxYIBn2MXrzB7HSSH/7Tr3n5Fxdqur0duveuhia+1SI5p155m7/9Ty9gmDZ+vwfLttZlArcZUm42O81O9hsVHY0IqtU0q13PKN7y66UVkchq12AzEauXXjjLf/2Hn/P+lZsEQz5URaZvICrq1JYhRI9AcAehhoMoPg9mKo0aDmGm0ig+D2o4eLuHJhDccfzNd54l0hHZFCkkzbq3VaLS5Lajwy2YvvzeBLPTSXp6O9izd3CJqIKVUZ3Tr42iqHLNiW+1VJybk3P85s3LmKZNR0eQQt4gMZ9BUZSKEzhhp7z+NCMOmxEdy685oNQ3CqjYrDbSEaraE6baftfjumgmlWw112ij4rG44KFqCsGQD103uHZtGtOyRZ3aMoToEQjuIDzRCJH77yXx5nkKsXkUn4eO++8VUR6BYB0YHO4inTI2RQpJtDOMospcff8mPX0dpehMccITn1tgdjpLZ1dbzXEun9wWJ49vvH6JH/7Tr9mzd3CFqILKTRGPHT/AhfMfVJz41opMxedSWJaNP+ChUDDw+jQS8xk0VVkxgRM1DJuTZkRH8ZqrGS1cbFZbdBiUZbnhBrzLaYVIbiSyenNyjvl4mkujY5x65Z2mr9Fa4rH8M5QveCiKwvVr02QyeUzD5Kk/eFQsBJQhRI9AcIcRuWeEwGCfcG8TCNaZVhVJt2ISduniGOlUnpuTc1y/NkP/QJQv/4snGRjs4uc/+w2vvnqO8etJAsHmhcHAYBcPPAgv/+JC1VXnSivSjz95hMefPLLis01OxHjj9UvE46mKIiraGSYU9tMRCRGfTzM/n0FVZJ749NGKNQ+i187mpJnoUKXv8vTroyiKXGpWOzF+y2FwaLhrVd93q0RyvcjqhXPv8/xzF4jPpZiajNPd287I/uab+FYSj8s/w/FHDpbuv7b2AJGOEB0dIf7l//q5mmYmH0bk2z0AgUDQejzRCIHtg0LwCATriG3bay6SfumFs3zzG9/nr/7yh3zzG9/npRfONr2P4oSxsyvMAw/tY9uOXkIhP/tGhpiciPHMydfBgeHtPTiOw8kfvcbkRKypYxRXnSVJ4sb1GbdxaFlvkFqv3X1oZ2mCV/y8P/zBr5majHPp3bEV57F/oJMHju6js6edrq42du7s5Sv/8tP87u99dMmYihPPru720sQzk8mXok+CrUOl79KybI4+NIIkScRmkpiGtcRhsNnve7mwWu29AEtTz5Zfvzcn53jj9CUcx6Gzsw3TtEnMZ8jl9FVdo+X3UKXP8PMXzrJjZx83J+d547VLTE3GAbdGb72ZnIjx9oWrqzqHtwMR6REIBAKBYBVMjMeIRCKrLpKuFqlopGahnOWrzsGgb0nqWTadZ/vODrJpZ02RqVopS42kM5V/3j37BrFsi5npBIoq0xENl87jxPgs7ZEQf/g/fBKPR6u6v/Vy6aoWeRO1Q+tHte/y8SePcOKJjzA+Pomm+vnH//Liqr/vVlpZ10o9e+v8BxRyBl1d7eRyOv6Ah3xOJ5crkEnn1nSNLv8Mum5y+dIEc7EF4vEU7ZEge0eGyGULNSNK5ddyrZq/Wtf8VkwtFaJHIBAIBIJV8C/+50+zfcfgqifAlSZhF5qoWShSb/IfCPlIJbNIknfNwqBWylK9dKbln3dk/zYUZYLP/87DPPDgvlupO8vcuu4+tLPq8SpNPOFWMXyz380Pvvcyzz/7BoZpEY3essneihO8rUQtEWHb9mKz2h6SicyqXdlaLZKrCf1oZxivXyMWS9LV1U5HJMSMnmAutuBeU00ukpQLj/LP4A94uXJ5ElmR6eqOMBdLUSgYDTm9lV/Ln/nsgxy4Z2DFcWtd81s1tVSIHoFAIBAIVsH+g9uJRCKr3n75JGx8LEYykSHaGWZouLvhiUQ9t6zPPPUgr756jrEbMwQC69uEs9bKcKVJZzQaLgme0kRqmVtXrc+/fOJ56eIY3/zG91clTn7wvZf5m+88i2m6Jgq2aZcib1txgrfVaCRauBZXtvWwsq4k9Ivpmc8/d4Eb12fo6mnn8797nL37hpsecyXhsbyp8N6RYXw+DVWVyWbyFSNKxfvSMMwV1/IzJ1+nb+CT9PT0lI5bT9SsV2PZ9Y6mCtEjEAgEAsFtYPkkzLZs2tuDDA13Nz2RqDUZ/Pgn76NvIIRlqnXd29ZCvWjIwGAXxx85yPPPvsH8fHrFqveSidSiW1cjn7848Wx29Xl5M9Xnn30D07LpiAYpFAzmE2kUVebG9Zl1meAJVlIrWlh0Q4t2hqtG/+rRqGha6+T70H27OHj33tJ4W5n++rU//SL79g9zaXScp//bL0klM9y4niaX1zENiw/en2Lnzt7SvVV+X9q2zcJClkP33VW6lsduzJBK5ZYcu56oWY/U0o2IpgrRIxAIBALBbaJ8EmYYJv/w9y+seiJRa8IY7Wyjp8edwKwHjQiOl144y6lX3sEwLTRV4fgjB3nsk/eVjXFxIrXo1hWLrV/NRiV7ZMOw8Ps9FPKuTfb8fAZVVdi2vWddaocEjVN0Q8uk1j4hrpeG2arJd/9AJ4ND3asaI9S+novGBvG5Bf7mO89iWTZtbQGCQR/hsJ8/+tIJDh/Zs+K+HB+bJZnIMD4WKzngBRa3KaeeqGl11Gyj0uWEe5tAIBAIBLeRojvT4SN7qrqgbTTNujLVc1JbYmKwd5BQ2M+pV95Zsv9yF7jYTLLpz1/LUWv5Z1vugHX6tVECQS+RjiAOkFi0yX7yMw9squ/lw0i5G9paXdfq0UqHt7XSyPW8b8TtC3To8F3ce3gX99y7E1mR0TQ3prH8vhwa7qYtEsQ0zNK1/JnPPkS0s23JsWs5MhZ57MRhvvanX+RP/rff5mt/+sUlCxjNslFOjCLSIxAIBALBOtJMqsxGdJKvx2pWuuutDNeLwhTP0b79w+wdGWJ8fJKhoYGmVsobXX2uNpZiM1VFUdBUhSc+fZTf+aJrk/3YicNEOkLcuD7Dtu09ov/JBhKfS5Xc0NY7vbDStXH5vQneeP0SDzzIht6PjVzPRXMD27Lx+z0r7rtK9+XQUBd/9KUTJYfIvv4oMzMzK47fyLOomV5MtVgvJ8blCNEjEAgEAsE6sRoB0aqJxGpYbZpJvQlaJdMG27IxDLOqm1RPT2fT429kolbLHrlSM1VY+T0m5tNrrjcQFtiNsdwNrZkJ8fJzXOucT07EmJ1Nug1RF6+N0Ys3mJ1O8sN/+jUv/+LChrv21RPb9e67aq+X78e27arH36hn0XqYTFRCiB6BQCAQCNaBrWjruhZXplqCo3xSc+HcByQTGdrbg/zNd54lnc7R2dVW002qGepN1BqZKJazHt9jK+pGViOaJidizMUWUFRz1ed3o1nuhtbohHj5Od6+o5fr16YrnvPy9+ZyBdLpPPPzaWank/T0drBn7+Cqv/e1iNtGxHY9oV/t9eK4dN3AMHNYprKmGqS1shFR7g0RPYVCgQcffJDz589z9uxZ7rvvvo04rEAgEAgEFdmI36X1snVdT1abZlI+savmrFVctf72t35UsuX+4P0pbk7GGdrWXdNNqhZnz1xuOu2smQlWq7/HVoio1Yim4jbZTJ6h7e0cO5bmE49/pOnx3w6adUNbWcAf47mTp9m5q2/FOQdWfB8LC1n27BvC0E327R9q6Hsv3gMd0RDK4uy62e9puaNgo9dJI0K/UuRyfCxGaiHDyME+JMnLU5+tfx2tZ4RyvSNLGyJ6/vW//tcMDAxw/vz5jTicQCAQCAQ12YjfpY3KU28l9aIglSY8zUzsNE0tFVTLskxvX4Qb16aZmZonGPRVdZOqxn/49//EcydPo+smHo/Kp546yr/66u80/FkbmWC1+ntcq4hajWgq32Z4ew+OU+CZk68zcmDbhgvw1U6am3FDW36OAwEvum4SCPpWnHNgyXt13eTGtRnSqRzJRIZL746x78BwTWOMn/3kDKdfG8WybIJhH0986hAH71aa+p4qOQoWx5XL6ciKzFxsYUUdXLPnsXgt5HIFcrkCDg6FggGOVPc62upNetdd9Dz33HP89Kc/5Qc/+AHPPffceh9OIBAIBIKabNTv0kblqbeaffuHQQKQ2DcyVFPc7Ns/3NTEbrmAyGUL9A904vFqpXNUyU2qEmfPXOa5k6dxcOjsCrOwkOW5k6f56KP3tNRooNXf41pF1GpE0woREAowPpbc8KjjRk2al5/jbLaAx6OSzeSxo+EV57z4Xn/Ay5XLk8iKzK49A4zdmGFmOoGiynQs6ytV/DxPf+9lLl+aQFZkdu8ewHEc3jh9CVUNNPw9VRKyp18bRVFlRi/eIDGfIZfTURWZS6NjzM4kVn0ei9dCqM2PZbpW17btEAx6SadyNSNZWy1ddznrKnqmp6f5yle+wg9/+EMCgUDd9xcKBQqFQunfCwsLgFtkVavQarNg2zaO42yJsYIY73ojxru+iPGuL1tlnM3S7O8SNP/bdHNyrrQC++gn7mXvyFDp3/0DnRt+bpu59n7x4jmeOfk62XSeQMiHYz9IX3+Um5NznPzxazgsTnhiydK/s5k8w9t7lqSnzcUW6OuPrth/X3+Uz3z2QZ45+TpjN2YIBH186Y9/i30jQ1waHQcc9u4bxHGsuuO9cX0awzDp7AojyzLt7QHm5lLcuD7NvYd3rfZ0VaTW99jsvV3pHHzmsw/R1x9taB8d0RDBsO9WYX8sSTDkoyMaqrr98m1SyQKBOtu0mmrX0N6RIfoHqptWrObZWekcf/qzR7l2bXrFOQeWvNexbfaODBMOBxjZvw1VneDz/+w49x/dV/reb07OcWl0jH/6/q8wdANFkZAkh+vXpzh03y4KeQPHsRv+nuZiCxXvowMHdvDcydcxLZtAwENHR5iXXjwLDnh8WlPnsUjxWshl80gyJOZTdHb7yOcKNa+jamOsdq+vF2u5XtdN9DiOw5e//GX+l//lf+H+++/n2rVrdbf5i7/4C/78z/98xd9nZ2fRdX0dRtlabNsmmUziOM66NYBrJWK864sY7/oixru+JJPJ2z2ElrOa3yVo7rfpwrn3eeP0JQo5A69f44Gj+zh03y66ewOAVdEadr1p9NqLzy3w6qvniEa9bN/ZQSqZ5dVXz9E3ECKVyhEMyHT1tiNLsts8dCaJabn1IY5TIBAKkEoWGNrWjqKaVT/rgXsG6Bv4JKlUjnDYT7SzjQvn3iudt1dPneMjR3Zw7+Ha4+3qCbB7bzcODoGAl2y2QEfUR1dPYF3Os6JS8Xtczb1d6Rw0OmZFhSc+dYg3Tl8in0/T2eXjgQdHUNTq19eSbQppuroDPPDgvprbtJrx8emK19D4+CSKalXdbrXPzkrnOD63UPGcF987Ph7j1Mtvo3lUAiGJVLLArj1d7NnXUzpXxXs8mcig61kCIR+9/SEcHHAgl11gx64u+vpDDX9PimpWvI/2HehhctIVYB6vhserMn5jFoChbdGmzuOtY7nXwos/O0tPbxDL9tEe8ePYCp94/N6q10S1Mda619eDtfw2NS16/uzP/oxvfOMbNd9z8eJFfvrTn5JKpfj617/e8L6//vWv89WvfrX074WFBYaHh+nu7iYSiTQ71A3Htm0kSaK7u3tLTGrEeNcXMd71RYx3ffF4PLd7CA2znr9L0Phv083JOZ5/7gKO45RWdp9/7gIH797b0ArsetHotTc7nWX8epLh7T1k0w6S5GXsxgyWqTI0NEAma5P+IF76bJIkcfDgHlTZxzMnX2d8LFlaQR/Zv7vmmMqdw1act7kkvzlzjXsO3U1fX/W0mZ6eHs6cvsZPnjmNbph4NJVPPfUgx47f1/Q5WgurvbfX4p524rd6OHj33iWRp0a3Kbq37RvZtaHPIstUKl5DQ0O17cnX8uxcfo5rnfOenh5G9u+ueT2XX6t+f4BrV8fIZXW8PhVDt7Bsm+mpNI88ejf7Rnax/8Cehr6nnp4ejh1LrzjuvpEhnn/2ArFYjq4uD5MTcfSCDQ5ca/I8lnPwboUf/dObKIqPSNSPLEkspHUOHtxTdR/VxljvXm81a/ltalr0fO1rX+PLX/5yzffcdddd/PznP+fVV1/F6/Uuee3+++/nD//wD/n7v//7Fdt5vd4V7weQZXlLTBIAJEkS411HxHjXFzHe9WUrjXcrjLHIev4uQeO/TfPxNJlUWQ5/l5vDPx9P31YrWGjs2uvsaiMQXFprEgj46Oxqc+taPrusruVzxxgc6mZwqJuRA9tW7ei04rx1tpPPp5mPpxkari0M/tVXf4ePPnrPbW8aejvu7eK5b3ab/oFOZmZmGhpvK526Boe6q15D9djI8/uJxz+y5HoGePft60Q7wyuu1YGBTi6/N4EkSYTDfrp6IsgyDA71lMbb6Pe0/LjF8738nP3u7z0KjrOq81hkPp7GNG123tW3WOMlEZ+7WfdZVW2MG8laroGmRU93dzfd3fVP7H/4D/+B/+P/+D9K/56cnOSJJ57gu9/9Lg8++GCzhxUIBAKBoCKb5XdpK7q1lVOvYL9eH56WFfbHknR2NX7eDh/Zc9vEzp3MepgObEQvllZQvJ6Xn4Pjjxxccq0Ggl6CIR/9/Z0Mbesily0gyVLD7oPVjltOtXO2lvO4/J5LJQsEGnxW1bvXN3PT3XWr6dm2bduSf4dCIQB27drF0NDQeh1WIBAIBIKKrPfv0lZ1ayunfIJlGCaapjI5EVvSuLOWffVqJjzl5+3yexN4NIVHPrbvtqYErhfrNSFs9X7X06lrvXuxtIpK5+DUK+9w/JGDnHrlnSX3+PWrU8zFFppyH2yGSudsLeex/J67cnmCgcEwxx8+uObvZbNbWm9Inx6BQCAQCD4MbJWV7FoMDHZx6eJYzclLpckNUHWbepPyx04cJh5P8fyzb2CYFhfOvU8qafD4k/dvynNY/nkada5arwnheux3KzbWhZXNPStdc40KxGrnYN/IMMcePrBkH8uvh9thWNIsxXvup8+9gWXZnPr1O0Sj4VVfO1vB0nrDRM+OHTtwHGejDicQCAQCQU3W63dpq6xkV6Pe5KXS609/92WQwOvVVmxTT0AVj3nqlXcIhf0YhsnNm/O8+soVTr92iS/8/seamoitd3rNcpHxmc8+yIF7BuqOaT0mhOu1362Wqrm8QWguVwAk/H7PkmuuGYFY6xwsv8fL/13LUnkzpX4V77lg2E//YJRrH8TXdO1sBaG8dSpVBQKBQCAQrDvFyUtXd3tp8pLJ5Evd6yu9vrCQZSGZXbHNpdGxJZNyZ7EAe3IiVvGY/oCXsRuzqKqMqikUdLPi+6vx0gtn+eY3vs9f/eUP+eY3vs9LL5xd9XmYnIjx9oWrS469XGQ4jsMzJ18nPrdQc1/1zulqWa/9FtOfJEnixvUZJEnatKmaL71wlv/fn/8j//hfXuT9929iWTbT0wmmp+fp7G4rXXNnz1xu6Fos0upz0MprsxWUrp0u10K8q2tt1065SLRte1MKZZHeJhAIBALBHUhxVbkjGkJp4te+3ip/pdfb2gIgsWIbkBpa/S3uc2ZqHsMwAdA0ld6+CHOxhYZWi1sZ9agWEai0mj12Y4ZUKremc7pa1jMisxVSNYvfuV4wUDUFVZUZH4+B4yArMoZula65G9dnmo5EtOocrPbabGVkaPm+StdOLOn2+omt7drZCjWNQvQIBAKBQHCHsWTSHvbxxKcOceK3GusLU2/yUun1L/xBBRvdzx9j38hQQ5Py4j6f/t7LmIaFadoMb+shly00PBFrVXpNrQlqJZERCPrqunWt14RwvSeaG5mquZoJfvE77+nrYGYmiePY2LaNZdmokoTmUUrX3LbtPasSiK04B6u5NltZq1VtX0997iFO/vg1YjNur5+nPre2a2ezC2UhegQCgUAguINYMWmPJXnj9CUO3r234V4e9SYvlV6fnIiBBCCxb2ToVp+RBiflxX3+7CdvcvWDG0xPZ/B41Krvr7pyvcaoR60J6t2Hdq74PI26da3XhHCzTzQbYbUT/OJ3nssWGN7WzZXLkzi2Q3d3Ox6vVnJUe+rzxzh8ZA+J+fRtiUREO8MoiswH70/R2xepK+ZbGbWsta/HThxm78gQ4+OTDA0NtKSf2GauaRSiRyAQCASCO4gVk/Yut9lnfC7V1KSm3uSl/PXlk1achxrq71Npn//DP/8tRi9ewTLVUmPU5dRcuV7jpLaeeHrsxGEiHaFSQ9R7D+/i1VPneP3UFbZt7+XwkT1VoxaVzmkrUpg280SzHmuZ4JdHukzTYtfufo4+tJ/Hn/gIsNK9bb0E4nL3tvjcArPT2dL1e+niGOl0jpuTcW5cm6Z/oJMv/4snqh6/laYA9fbVP9CJolr09Nx5FvHLEaJHIBAIBII7iLU2+2yWRiatzU7Ko51t9PT0VOy+Xm/leq2T2nopY8sF1z/+3y+STiW58t4smqZy8B7XFbCRqMVm72uyEax1gl+vae5yWi0Ql3+H23f0kkonGL/upj4W+/p0drUxtK2bmal5PF6NfSPVe4O1slZrrfvaTI5za0W4twkEAoFAcAdRyXXqgQdH1q3Z53o5iNU6XjyeQpZlcjl9xfEGBru4+9DOhidolVzaHjtxmK/96Rf5k//tt/nan36Rxz55X+m95YIrMZ/m9VOjWLZNZ1cY3TB49dfvMjM9X9chrJITXDNOdZuVSuezFlvB9asay7/DXK7AT545jV4wGd7ufqfPP/sG8bkUXd3thMMBdu7qx7LsmvdHK53jKu3r+CN3E59L1f2ONpvj3FoRkR6BQCAQCO4wyle/Xfc2a92OtdE9XS6NjjE1GWf8Rgx/wENHJERXT/uqjlcr0lKcYJaLqeVRCUVVsG0br1cll01h6BaWZTM1lSDSEaZ/IFo1arEV+po0y2oiV2s1Y7id0bLl32Eg6EM3TLxerfSdJubTaJrS9P3RylS88n1dGh3j1Ctv87OfvFmzz9RWaDbaLEL0CAQCgUBwh7GRHeI30qq22FAx0hEkMZ8hm8lj6Caf/93jLS3wHhjsqjiZ3rd/eInAs0wLWZbJ53RSqTyW5TamdGyb69emsSyr6gS3UbG4VdKL1jJJXu0E/3ZPzJd/h9lMHo+mUigYeL0eYrNJOqLhUopb8f4oRlqgcgpekVam4hX3c+qVd5acr2dOvk7fwCfp6Vnq7lgUdJ3dbSTmM/gD3obt4zcrQvQIBAKBQHAHsXyyXm0lt5VslINYfC7F+FiMXK6AA2gelUDAy959w6vaV7VIC1BxMh3pCHHo3rs4/dooN67PEOkI8eDxEZKJeXTdRJYluns6sG2HTCaPaVg89QeVBWAjYnH5d3n8kYPsGxleco5bIYpasY+1Rq5WM8Ffj2hZM+ei0nf45FMPkkrNM3ZjhkDA/U4f++R9HHv4QMVIy+2MTNXqMxXtDJPLFTjzxmVkWcK2HXp7I1si7bAaQvQIBAKBQHCHUGnlu9pKbqvZCAcxwzBZSGZwcGhrC7CwkCWbKZQamjZCcVJrGOaSVfrxsVlsy8YwzIqTw/PnPuDb3/rRYlqbzLHjB3j8ySP09Ud5/rlfk8v+Cq9XY9eeAf7/7d15dFvlmT/wr3ZLtmRrdSxvSYixE0IWTOKEpIRsBJoUKGs7LQNt2mk5tD/mlGlJhzOHmSktTSmdaekcSAd+BAo/CoQWskGaBIITSJyQxHETYieQxfsiyZZsS9b6/v5wpGrXlazrK9vP5xyfQ2xZ97nvlXnf5973fd72Ngt8Xh8e+uFtWFhblTCWZMli9LVsPtuKF57fjWlmHXQ6NTbctgQAxjy1K1vTw8Z7miMfx8ykLaKv4bQSXdzqg4metAj5ZCr1PlOiqH+K4r9sgqBCBoQQQsgkEa+ogHN4JO6d3IlIJpOisCgfcrkMw8NuyOUyFBYVQCbjdg83fGH2qy/vQ+X0YohEIpxqvICLX3TD4XDh1Zf3oaW5LWJxfXtbHxwDw5DKpKiYboJCIUPTqQuh911YW4Vvf/eWUClrpVKOr9+/OmnCE5So8EL4tXS5PBjoH4bPH4BerwFjDNveqMe2N+vHVAghm8UUsrn4PpNjnj/XAavFgekzpmX0XmNpi+hrqNNrcM2105Ne0/Eo+hEvzuhrlGifKZt1EEqlHLWLqjD32hmoXVQFpVI+brHygZ70EEIIIZNE+ndyhZfOdCKdXo3SMgNcLg9UKgWcTjeUSjmnO/vxnoJdvtSDW768CG/96SMUFCih1RWg3zaIPbuPoe6G2fjs9GW0Xu5FwB9AYVEBysoNEIvFUKoUaL3ci5bmdkwr0QEAblq9ADVzKrI2xS/8Woolo5XqlEo5lCoFlEo5zp5pBQDMvqYi46ld2Z4els40x2ytVVq5ZiFstkG88f8OwGZ1oKvThk+PtuDBjevSemIV3hYulwdiiTjra1iEeBoWLd6TqXhr/sI3fhUq1myjpIcQQgiZJOKtMUh0JzcXxJtOtGLV/ISvDz+/oSFXWkUTEg3wnU437HYnXC43Ll/shsfjg+jKNJ51X16E6ppyeL0+vPryPlj67PB4fPj8fCcC/gC2/ekjsEAgtGYq2wvPg+dqtTggEgF5efJQWWeNRgWIMKYBNB+DcC5tkM2Ka50dFnyw9yQcDidU+QoAQE/PALa9WZ/WtLFgWzSfbcVA/zBcLg+kEjFamtswd96MjGKLNp5FP1LFETxmIBBI+JpciDWbKOkhhBBCJhGud3Izla079Ikqb11dUwaJNPa1wWNmWjQh0QBfpVLAYR+Gz++HzxdAIBCASCSC3x/AJ4fOYOmyOTCXGjDQP4Rtb9bjfEsHxBIxrq4ph1wu4XXNVPBc975/HO/vPgarxYFjR1pQYtbjwe+sA65Mwcp0UCrEwDbbFdds1kE4HE6IRSIolaNJj8/ngsPhTOspjbnUgBuWX4MXnt8Nnz8ApVIOrVYd8RnIhvEq+hEtk79boWLlCyU9hBBCyCTD5U5uJpLdoU93UJVsapWxWBV6z73vH8fRhmb4fYGIY8Y7RniRAplMGhFLcIC/7c16nP2sFRqNCnfftwJGYyEKi/JhHxiGy+eBRCqBTCaFVqeGzerAsYYWLKobHQBCBPzfP7yPiukmqNUqBAKBhNWvsqnp1AWUmHWYOasEvd39kCtkqK4pg7nUMOZBKd8D2+jPRban1On0amg0KvT12eFyuQEAPp8fEpEoaYGLeJ/X6ppyTDProNdrQtMI+dg7Kd0ngmO90TCWJ2vjUaBkvFDSQwghhJCUkt2hbznblvagKvnUKj8O7G/E228exPlzo09WZlWZQ4vL4z0VCA7s2tsscNiHUViUj9IyQ2wsLPyLhdYJ5Rco0dlhgd8XQJ5SjsuXejDQP4Q3X/8I9QeaQvv0mIqL4HK6kZ+fNy5rpqKThPz8vIiBeDYGpWN5j2QDci57HbW3WUJV8zKN/e77bsTWF/+Krk4rPF4fxCIRRtyjUxIH+odiEvPRstFnYj6vOr0aOp0agcDok55cWMcy1qmAQu9llEuoehshhBBCUkpUeaqluT2jqleJqn2VmPWwWR3YtbMBbo8PUqkEcrkEba19UKoUcatdBQd2Lpf7yh4+DE6nGy6XJxRL8DWKPBlmX1MBRZ4MO7cfAQBsuG0JioryoSnMh0Qihs8XQFenDV6vH4ODTvT1DUS8lkv1q2wJTw6D63mEHogHhVfDe2bzW/hw38nQzxJVQwP+3oZNjRdw8YsuOOxOvPryvojfT8fKNQvx1K834nsPb0CJWY/yChOuqiqJ+CwGY31m81t44fndsPTaYz6vfFWg6+yw4HTTxbSr4mWjup7QFeNyCT3pIYQQQkhK8Z7MSMTi0acOtkFUXV2a9nSleFOrAoEABgddcA6NoHhaEfp6B8DY6JOA3u5+aArzYwb8wYFdgUYJvy8AjUaF4WE3VCoFhoZcoQFeoh3mw+Po6rRi64t74B7xQG9Qwz3ixUD/MCQSScxr010zlck0pVxdUJ7qCUKyaWwr1yxEkbYAzz27HTq9GmXlxjE/gTCXGjA06IK1zw6pVIKBgSGUlxvh8/vR0twWilVv1KC93YL+gSG4XJ6Yz2u2p/uN5UlNNqYC5kLFuFxBSQ8hhBBCUooefLucHgAMB/Y3orvLhoAvgOo55WkPquJNrVKrlVBdKZdbXm7E5593wuf1wevxYdmXrgm9PnqjUefwCCRSMRwOJ+RyGZxXpqEFY3G5PKM7zItECDCG4mJt6GfhccgVMuQX5MHt9kKRJ8NA/zBkUknc1wbXTHV1WtFvG0o4UB7L4DcXF5SnGpCnGmzLZFKIxWKUlRsTDug7OyywWhyQSH1JC0V0dljQ0tyGg/V/g1gihlQmBmMBfP55J8rKDWi99PfEPFj62+XywOV0Y/hKFcDwz2u21rGMdWpZNhKWXE2ahUBJDyGEEEI4CQ6+W5rbsO2NeigUMhiMhfAH/OjtGYBEKoZWpx7zoEqn12D9hjrs2tEAn98PnU4Nn88HkViMjw+egVY7OugLTyIqpxfj8qUeKFUKeD0+qFR5UCrloVhGpwSx0QOIgv/J4hz7yroOXwD9A0Po7x+GVCLGui8vTnhOTY1fYM97TRgejJ/QZGNdRa4tKE81IE812E71+8Ek0Tk8grLKQixdOoRVa6+LiSP4ut6eAfR094emb3m9PrhHPHDYh3Hgg1MRiXmRNh9ejw82qyMrn9dExvqkJlsJSy4mzUKgpIcQQgghnAWnLvl9ARjKRtcJ1MyugETSgdvvXIZFddVZGVQFN/uMTrAsfXZse7MeYIAiTxax0eg3H1gDmUwat3rb6A7zCtQuqoLX44dMLom7+WT4QFMiFUMqleCW9Ytw5z1fihtnV6cVx462JE1ooge/4ZubJmqrbJUG5wuXAXn17PLRBBOiULU5Lr8fniSWV5rAmBu7djagZk5FxHtEJ5N9fXbYbIOYc00FrJbRjUoNxkKUlRsjEnOjsQi3f3U5qmvKslJ6PdF1ysaTmmwlLLmWNAuBkh5CCCGEpCXeYE6nU2ct4QmKl2AZjIU4+1krwIDZ5RURd9BlMmnCjSS57DAfHMBWzy7nPNC0WQfhdnlhMBTG3M0P/jw4/S7e5qZgLGaaWzY37+RTsgF59DmALYlpx0S/H50kqgpUaG+zxySo0a+bNcuMcy3t6OuzQ5knh06nDk2fi07Mg7/PVbzkJtXmutl6UkMJS3ZQ0kMIIYSQEC5PGLK5TiDV8eIlWBqNCmBI6w56qpgzTTR0ejUUShksFjsMhr/HEl0WuXJ6MVqa22I2N41+KtTZYcG2N+vhcXthmqaFy+nOeolhm9WBvh4n9AZNzHum+4Qp3oA8nel88X4/+poP2t1Qxbm+0a+TK6SouroUd39tBYqK8vHqy/viJubpllhPVHqby+a6NLUsd1DSQwghhBAA6Q38szGYS3WnHIifrNx93wrgSvnedJKuYNWw1su9qKg0YWFtFYCxrbkpMeuxaHE19rzXFIpl2ZeuwccHz0S83+VLPVi1ZiGslkEYjBpodQVxN7/c+/5xnG/pgFQmQW+vHeUVRvh8oxXIsjFwPrC/EYcPN6L98ugeQ+HXOFtPmOKtZfn8XEdoo9dU8Ydf87bWXpRVFGL9V2KfFMX9bHxtBVauXgAAGOgfivmMAEjrWif6bEAkSrm5bniclOwIj5IeQgghhGQ08B/rppZc7pQD8ROszg4LIBqtSFBdw+0pSPSgPrhxZaYLzoPVxcrKjfjRj+8OVW+zWQfx1/eOx7xfZ4cV9oEhWC0OKFVyaIsKYDAVhp5gdHZYcPRI82gFMumVCmTnO6HVqrHtjXr4fYExJSOdHRbs2tkAnU6B8srIawyklwwkE/0EpuWzNvT2DuCdtz8ObfSaKv7gNQ9Wb6uZPSvu60bXDcX/HER/bgDgWEMLbNZBVFVzK7Ge6LMBsKSb65LcQ0kPIYQQMkUkm7qUjT1B0pHseNF3yoHIBCt2vUjqpwfJkrpMFpzHVhdbEFFdLGZPI4kYzZ+1wlhciIH+YYy4POj1DOD2u26IWMvi9wcwa5YZbW198Hp98Hl9cLvd8LgVY57uZrMOwjk0gsoZWjiHWMz6o2xd//AnMJ+f60Bv7wCMxYWoqi5NK5kylxqS7oP04b6T2PZGPRwOJzQaFe6+78ZQQhz+OTeXGkLXy2YbRHeXDf6AHzWzK1Je60SfjeqacoAh5klSiVnPed8mMr4o6SGEEEKmgAP7G7FrR0PCqUvjvYlh8uMlvlOe6VS0ZEnW3Hkz0lqjlKi6mFanDlWNi36/xUtm4/ChM6iZXQGbdRCOQSeGh0ZwdXV5TJswxjB33nT0dA/AZnXAYR/GyIg3YrpbJsmITq+GqiAPg3YnRCJFzDXO5vUPPmU51tCCd97+mPOTFa46OyzY+uJf0dPTD7FIhL4+O/7w3G6c/tslNJ9tjXgqFr7+purqUgR8gdFKbpIO6FKUrE62Fsxcaoi7uS7JTZT0EEIIIZOczerArp0NSROF8d7EMNHxAODypR74fRKUlhnjnEtmT6TCkyylSoGe7gEo5NLQoD6dNUrxqov9rakDzz27HWKxODTYfvSxeyKmVjU1foHms60Y6B+Gy+WBVCJGS3NbqOJceJtYLQ4o5FLkKWRwyqQR092umlWSUTJiLjVg/YY6HD7ciLbWXqhUkdc429ffXGrAojqg/kBT1pPpluY2dHVakaeUQalUoN82iNbLPejuskKRJ8esKjPYlXVfEEU+xaqeUw6JVMy5xHqyzwat15k4KOkhhBBCJrnBQRecQyMor0yeKGS70lSqSmDRx2s524bfPL0N+Soxhp0BbPhK7NqPTJ5IBeO4Yfk12P6Xw+jqvAQAKDHr0HK2LSLx43LO0TFY+4bgGBiGTqdBWbkhIqkML6F9w/Jr8MLzu+HzB6BUyqHVqvHJoTNYumxO6LjhbdLXZ8cbr30InV4Tmu4W8AeweMnsjK/NTasXYJq5AH6fNKZ6Gx+VxvhLpkWh//J6/RgZ8YIxBgZALBGhrbUPc+dNh9XiACCCRCLGhS+6UTytCC6nG9o0S6xTcjPxUdJDCCGETHJqtRIqjolCtgZ3XCuBBY8XmjIGBkNxIYYu2OJOW0t3EB0eh0QihsfrReV0U8L1MemW7G5r7YXekIfCogKUlRuSJpXVNeWYZtZBr9dAqVLErd4W3SbR090UcinWrrsuXlic6fQamEyjCXC8c8v24J6PZKq6pgwlZh16egYw4vLC5/MDIsDn9WPQ7oRCIUNvdz80hfmwWR0YGnKhq9OG1ks9KDHr8eB31vG2KSnJTZT0EEIIIZOcTq/B+g112LWjYVymrmWy7qaluQ29PQOjU5BEYhgMiaetcR1ER8dx4YtuWPscmHlVCdRqFfLz8yKOkUnJbqvFAcfgAP78VkPKpFKnV0OnUyMQGH3Sk+opVfR0t8JCFa/XjU/hxRrC/z2W93tw4zpse7Me3V39cDpHIFeMTnWzDwxhZMQDBmDZl67B/r0nIZdLMXfedAw6nJArZCgqysfpposZJS3jtXksl8SKki/uKOkhhBBCpoCbVi9AzZyKcRkgpbvu5sN9J7HtzXr0dPfDYrGjbulVcDi8KROCVOcQHUfxtCK0XupBb3c/8vPzIpKOTEt2B6uLcUkqM5nqNVk2t+QjUQgvlvDKS3+F1+uH3x9AYVEBZDIJvvGPq9F6qTe075HsSiGIvj57zPorrrGMZU+ndHBpr/FKviYLSnoIIYSQKWK81iWks+4mOIhUKGS4uqYMX3zeic4OC+QyFe66b8WY4o2Ow+V0o8Ssh1whi0k6TjddHFPJZq5JZSZJTDrXLfzOP4CcSJb4TBTCiyW4XG6o8vPgHB6BUqlAUVEBth2pj9j3qKW5HSIRoNfHrr/iEst4lHbn0l7jlXxNJpT0EEIIISSr0nmiET2ILCzKh9frxC1fXo6VqxdkPY4Hv7MO1TVlMclANkp2c01O+Eo+w+/8u1xuACIolXLBnwLwnSiEX+ehQVfo8yaTSWP2PfL7/Cgsyk+5/iqR8SjtzqW9xntfrcmAkh5CCCGEZB3XJxoxT2NcbugN+aiuKeM1jmxMPcsl4Xf+9UYNjh87DwCoXVQVUbBhWolu3GMbj0Qh3nWOVwgCjEGhkGUcy3h8Tri013jvqwVM/PVDlPQQQgghhBdcnmjEDCIL8rCorgYlZn3C30l38MX1ycpEXj8Tfud/oH8YYvFoSWevxx/xFECIpGe8Esro65yoEASu7N+TaSx8f064tNd4J+mTYf0Qr0nPrl278J//+Z9oampCXl4eVqxYgXfeeYfPQxJCCCFJUd+Ue8IHkVpdASRSf8LXJht8ZeNOdLIEKZfvdEdvvhoIMACATC4Z01OAbJ0zn4lCshgTHXessfC9Po5Le41Xkj5Z1g/xlvS8/fbb+O53v4tf/OIXWLVqFXw+H06fPs3X4QghhJCUqG/KXcFBZCAQQG9vb9zXJBt8tZxt4/VOdLbudPOVOEU/1SguLgJEIlgtjoinAIFAgPN7ZnrOic6Rj0QhGKPNNgiZVIJ1X16Eu+69MeI18Y6bS5uNjqW9xuM8Jsv6IV6SHp/Ph0ceeQRPP/00Nm7cGPr+nDlz+DgcIYQQkhL1TbktOPAbfdIT/zWJBl8tzW283olOlmylM12MjylC4QPm6Dv/wOj+R4Ao7TVSmd7d53qO2Uj+gjFaeu3oHxiCy+nBC8/vBoCYxCfV+wj1BI9Lewn9hFGI9UN84CXpOXHiBDo6OiAWi7Fw4UJ0d3djwYIFePrppzF37tyEv+d2u+F2u0P/djgcAIBAIJDWnQmhBAIBMMYmRKwAxcs3ipdfFC+/Jkqc6aC+KXdjPbC/Ebt2NsA5NAKVOg83r7sWq9dGDu66Oq3o7e2HVCaGxWKHwVAIi8V+ZaE64BweQXnl35OhttZeWC2OrKxhsVocCd/fVFyUsH27Oq0RCcjOHUfAcCWJsNjx9pv1YACqa8qSrmFKJKLdCvKwfkMdqmeXgzEGxhhazrbF/PzGlfM4fR6SnXOiNu3qtMac484dR3B11PnFi/umBJX6kn1+rRYH+vsHMWAfglgM6PT5GOgfxl/fO4YlN8zm1KZcYwm/lsneN52/Ny7tlegac4mFCy7xTivRYf1X6rBrZwPaWnuhys/D+q8swbQS3bj/f2Usx+Ml6blw4QIA4N///d/xm9/8BtOnT8czzzyDm266CefOnYNOF/+P5amnnsJ//Md/xHy/r68PHo+Hj1CzKhAIwG63gzEGsVgsdDgpUbz8onj5RfHyy263Cx1C1lHfJOxnz2Z1YHDQBbVaCZ1eE/H9w4cbodMpUDlDi0GHEy0tF1FWboTeUAgAaGr8AseOtsDt8iK/QAoggJGRIegNo0UPppXko6yyEIy5oSpQYdDuRllFISRSX8KpclxiC5JIfUnfP177fnLoNE58eh5+fwAFaiWmz5iGfJUYhuJCiEVieDwydA7a8f7uQzj8ST4WLa7GvAVXpdWeEe1md2LP+5+g/oAcgQCDWCyCa8QDnU4V+vnhw40oLsmHWBJI+XmIPmdr3zAKC2U4f/4CJFJf3HZqb++JOMcCjQ6WXjva2ztD67TixX34cCOmmQvivqfVYofFaoPN6gh9HsJjNJeqIZH4UaDOg9fjg8GkgkaTF3HMdNowXizhnz+FUpb0WqXz93bmzAVIJD4YTUVQKmUx7RX/Gh9G/UefIuBnKWPhgmu8c641Y5p5dcTfCZe/rWwbS9+UVtKzadMmbN68Oelrzp49G8rCHn/8cdx1110AgJdeegllZWV466238L3vfS/u7/70pz/Fj370o9C/HQ4HysvLYTQaUVRUlE6ogggEAhCJRDAajRNiUEPx8ovi5RfFyy+5XC50CJxR35RcLnz2kt1N7+txov2yHeWVJjiHGERQwNI7BL9PCpPJhK5OK/a81wTGGAyGQgwN2+EZ8WHdrcsinpAsXTqEXTsb0N5mD92Jrpk9a0yxBZlMpoTvH699/7LtIF7csg8+XwBKlRzaogJ0dQwCDBga9kOpVODEp18AAIwmE6yWEex5rwnXzL2a85376HZzOhkaj7eiYnoxZsychosXutF6qQfX11VDImEQiRRoa+2F3yeFTq9K+XkIP+fTTR3o7RkAYwwnj7eixKzHP35rbUw7+X0SDDsDGLpgCz2JE4lEKCszw2TSx7/eYXGZTKbYa7OrAflKMYZdAaxfH3ltTCYTFl7XhRe3vAe/vx95SjmKtPnIyxNHHJNrG8aLJfrzZ7HYk14rrn9vB/Y3Yvvbx3D+XAfEkg7MqjJDJpdGtFf8a3wZldNNmD6zJGUsXKTz/4fo6yOEsfRNaSU9jz76KB588MGkr5k5cya6uroARM6TVigUmDlzJlpbWxP+rkKhgEKhiPm+WCyeEIMEABCJRBQvjyheflG8/JpI8U6EGIOob0pNyM9eZ4cFu3Y0gDGG8srRtSG7djSgZk4FzKUG6A0aqPLD1gtY7NAb8qA3aCAWi9FvG8LwYNg6HsPoOh6TqQilZcbQcVatvQ41cyrSWvuQKrZwyd4/vH07OyzYs/tTeH0BaLX5cLu9sPUPQSwRY8XK+Wg6dQGtl3rh9wVwdU0Z1GoV8vPz0Hq5F/22oYhzihdv8PjR7dbb3Q/GAFNxEcRiMUzFRbh8sQe93f3Iv/I6lWq0XUUiP6fPw6q110GrU+O3v34bEqkEeXkyAEB3dz/efvNgTDuVlhmx4StRZZRvWxpxTjHXOyyu8HhC1wYMhuJCDF2wxb02d927AoAIe3Yfg9fnh06njjlmIlxiSfT5S3atUv29Bc9NrpCh6uoyfP55J1rOtqOquhR337ci9L7R8fV0D4AxwFis5RwLF1Olb0or6TEajTAaUzdqbW0tFAoFWlpasHz5cgCA1+vFpUuXUFlZmVmkhBBCSBzUN+W2VJWfUu3Tk84i6nQrWaVblYrL+9usg/B6/VAq5XCPeKHIk8FqHYRarcK8BTOx9pZatDS3Ydsb9ZDLpQgEApwWhsdb8B7ebnKFDCWlericbuTn58HldKPErIdcIYvYx6XErE9rWpJMJoU/wCCVSqBUjib/bvcwOjos2Pv+cay9pTaiTapnlwMiEQCG6prYogdc95eJuDaivw/w412bu+69EUuXzUl7sX90LBKxGIuX1kS8JpNF/DarA309TugNmrixRH/uCrX5aL3Ui7vvuxErw55kRcenkEtRYtaFrvFELSggFF7W9Gg0Gnz/+9/HE088gfLyclRWVuLpp58GANxzzz18HJIQQghJivomYXAZNCbbpycbmzAmqn7FR1UqnV4NnV4Nf8CPgf5h9PXa4fX6MeJy49WX9/29OhcD53NKVEnt0cfuiVjUHizbHXzPB7+zDtU1ZRHnnmgheLI20hSq0Ndnh8vlxojLg6FhN4YGXfjj1r34YN9JPLhxHVauWRiTmIEh4/1lQtfGYh9d62JJfG1OHj+P1su9qKg0hd6La8WzYCx73z+Oow3NOHzoMzQ1Xghdp3Q/fwf2N+Lw4Ua0Xx6dBhmvGlv0587ldMNUXITqmvKUbRV9jfnckHSy4W2fnqeffhpSqRT3338/XC4X6urq8MEHH0Cr1fJ1SEIIISQp6pvGH9dBY7J9esayCWOyksB87Gof/p4BP4PL6ca0Ei2unT8zouxzOueU7InU3HkzQr9rLjXEfc9U55Oqje6+90ZsfXEPOtotcLk8AAPy1Qrk5cnR0zOAbW/Wo0hbkFaJ61RPzULtuGO0JLVIJMKG22Kvze9+82e8t/MoPB4f5HIpbt2wGNfOm5F2afCmUxegUMhgKCuMiZ3rterssGDXzgbodIrQdMl4bZDu5y68rRJdY5Iab0mPTCbDr3/9a/z617/m6xCEEEJIWqhvSk+29gfJxs7xmWzCyGWvmUSxjeXcg+95rKEF77z9MaqqSxNO7ePy3nxO8UunjfbuOYF33j4E57AbRdp8AIDP54LD4UTr5d6sb2C5cs1CXF1Thvb2TpSVmWPWrZw8fh7v7TwKBga9QQ2Hw4nt7xzG4U/OQqst4Ly/EJdpjlynNjqHRlA5QwvnEEvaBmP5m0gVi9D7+uQq3pIeQgghhExc2d5Iczx2jo/Gdc1OdGzZOHdzqQGL6oD6A01jnj7HZe1JptJpo7XrrsPRw2fxxRddcLlG964KBBg0GhUqKk2cErN0B+QlZj0kUn/cSmytl3vh8figN6ghFoshkUjgsDvR0daH4SEXpBIxppl1KZOvbE1z1OnVUBXkYdDuhEikSPk+fPxN8LEB7mSR+2UaCCGEEDKuou/+M8awc/sRdHZYhA4tLeGDWa4FA7J57sFkRSQSofVy7+gUrQynz61csxCPPnYPlt4wBxABhw99hmc2v4UP951MeB6nmy6mjDudNjKXGnD3fTeiuFiLEZcXIy4viouLcPd9K1A8TYt582fC7fbGPdfODgtefnEPfv4fr+H3//1OKHauccZTUWmCXC6Fw+GE2+OFfWAIIrEIqvw8eDxeXLrUg/Y2S8prnq3rZC41YP2GOkAEtLWO7XpnYrL83fKFnvQQQgghJEK6Vc34MtZpOpms2cn2uWdjal+4ZGtPghLd7e/ssMBqcUAi9YX2XEm3jYLn09LcBkCE6poytJxtwzOb38Lw0AgkEjGW3jAnoqrbh/tOYtsb9Vf2pBFjVpUZjDFsfXEPCgqU8PsDMXEG22taSfxNgwFgYW0Vbt2wGO/tPIp+6xAAoHJ6MfR6DS5f6sHw8Ah8Xh82fG1FynbP1nW6afUCTDMXwO+TJqzexpdc+bvNVZT0EEIIISQCH1XN0nVgfyN27WiIO3BPZ2Ca7mA2/NyVKgV6ugegkEvHdO7ZmsbEZVCbaI2OzTaITw6dgXN4BGWVhVi6dAir1l4HIP02Cj+feMdrOnUBa2+pDf182xv16L/yFEYul6CttQ9XzSpBV6cNFdOLMfOqaTFxBq/7+q/UYc615oSx/J8f3YkvrbgWTacu4OBHf4NGo4LBWAi/3w+f14+HfngbFtZWcWrfbF0nnV4Dk8k07vveCPF3O5HWD1HSQwghhJAIfFQ1S4fN6sCunQ0JB+7prldIdzA7b/5M7HnvU1j67ACAErMOLWfbBB/UcRnUxkuMPj/XgT27j0EqkyBfo4TH7cWunZEbfWY64E+ViO19/zjOn+uASCSCy+UGCzBIZRL0dNkAAMXTimLiLFArQ9d9184GTDOvDj2ZimdhbRUW1lahosIU+Zn92lLOCc9kMN5/txNt/RAlPYQQQsgUku7+JULcxR0cdME5NILyytiBe/iAOFVVrnQFB3E26yAsfXYUFeWjqqYMLqc768fKBJdBbbzESCqVwGpxwOvzI+APoHKmFlbLSFamPSVLxDo7LDja0AyxRAy5XAKGAJzDI8jLk0OZn4cSuSxio02pVAKv1w+DsTB03dtaezE46OIUi5CfWT6l8zRlvNqAS9W/XENJDyGEEDJFpHtnVoiKawCgViuhijNwjx4Qp7teIdngMXwQpzdq0N5uwYjbm3NrI1INauMlRkuWzcZbr9eDgaGwUAWfzw/HwDC8Xt+Y40mWiJ1uugi/L4BZVWa0tfZBKpUiL49h7S3X4/4H18RstHnL+kX4+OCZ0HVvb7Mg4A/A5/OnDiQsHqGvUTZl8jRlPNpgIq4foqSHEEIImQK6Oq0T5s6sTq/B+g112LWjIeGAON31CqkGj+GDOJfLA6VSDpfLA5fTjeEhV1bXRmSjQEM6T+ls1kH89b3jcDrdGB52w2BSobCoADJZdoaBiRKx4FMgxhjmzpuO3u5+yBUy3P/gmtA5RP+eVqvGzu1H0NR4AfaBYRQV5ePAB41wuxBagzRV5PLTlFxY95cuSnoIIYSQKWCi3Zm9afUC1MypiDsgTne9ApfBY/QgrkibD6/HB5vVAa1OjQ23LwUAnG66OKZpQ+O1DiI6MSotM8Dl8kCVr0B+vhh5ef6MB6jxkrbo4gbBnwefAlktDmgK82OuWXScK9csRJG2AM89ux06vRpl5UYw5o5ZgySU8Vy4n8t/s0Kv+8sEJT2EEELIFDAR78zGGxBnsl6By+AxehBnNBbh9q8uR3VNGXR6dURZ5kyTFaHu3Ief2/CQC1pdIdavXJTRMVMlbfF+/uhj96R1zWQyKcRiMcrKjRCLxVAVqNDeZhd8sD/eC/dz/W92oq2hoqSHEEIImQJKzPoJd2c2nkzWK3AdPCYaxCVLVqaV6GCzOtDX40y5L4uQd+6D5xbcp6dm9qy03yNV0pbs53PnzeB8nOjrNWh3QyXwYF+IhHUiPE2ZSGuoKOkhhBBCpoiJdmc2W9IZPMYbxCVLVpo/a8Xhw41ov2yHKj/53X+h79ybSw2YVqJDb29vRr+fKmnLVlIXfr3aWntRVlGI9V9ZIujnVaiEdar+zfKBkh5CCCFkCplId2azaSyDx0TJitfrw66dDdDpFCivTH33fyLcuU8mVXnqvj47JBJxVpK6bDyZyiYhE9ap+jebbZT0EEIIISQnZXvReKaDx0TJikwmhXNoBJUztHAOMU53/1MlX7m+w/28+TNxtKE5oh2CpaeHh0bgcrkxNDQC55X9d8aS1I31yVQ2TfSElVDSQwghhJAcdGB/I3btaMiZ3d7jJSudHRaoCvIwaHdCJFJwvvufKPnK5R3uw2OTSMRYesMcrL2lFgDwzOa3Ita6uN1e3H3fjaiuEb60cjbRVLOJTSx0AIQQQggh4WxWB3btbAgNpBlj2Ln9CDo7LILFlKhM8/oNdYAIaGvthUgkyvjuf/RC+eA5nzx+HqebLgp+7uGxKfJkaDp1AcDf17qEbxrr9wdgNBZxLicu9Pmlw1xqwNx5MyjhmYDoSQ8hhBBCcsrgoAvOoRGUV+bG/iTJnsDctHoBppkL4PdJU1ZvSybeQvmmxgt47tntEIvFSZ/8JJsSl43pcskW8Y9lrctYnmzl+jRAknso6SGEEEJITlGrlVDxvGic66CZ28amGphMowlBpqKTh/Y2C+wDw6ENOuOVh7ZZB9HS3IZPDp2JmzjESypWrJo/5tjCr0ema13GUgI6l6cBktxFSQ8hhBBCcopOr8H6DXXYtaOBl0Xj6QyaMy1VnO6TiOjkIeAPoLAwH2XlRrhcHoglYlgtjtFE50rhAJt1EN1dNphMRaieUx6ROACIm1RcXVMGSZqjv1SJTSZrXcbSrkJs8EomPkp6CCGEEJJzblq9ADVzKrI+hSndQXMm07cyfRIRnjx4vT68+vI+NJ9txUD/MFwuD6QSMRqOnMVnpy+DMQa9UYP2dgv6B4bgcnkiEgcACZMKY7Eq7XZLldikWxkv02lxQm7wSiY2KmRACCGEkJzEx6LxeAvvh4dHQolCvBg23LYEIpEIrZdTFytIVJCA60L94DkvrK3CDcuvQV+PHS6XB0qlHKZiLRo+OQubdRAGYyGUSgWUSjlcLg9cTndE4hCeVAQCgaxMEczm9Ui3XYP4OC8yNdCTHkIIIYRMGZk8YUhn+lY2n0RU15RjmlkHvV4DpWo0wfn8XAdkMkko/iJtPrweH2xWB7Q6dUTiEG9KWolZnxP73gCZTYuj/XJIpijpIYQQQsiUkemgmev0rbFUM4v3XjqdGoFAAEqlHJY+O7Q6NW5Yfg0+OXQGrZd7YTQW4favLkd1TVlM4hAvqQgEAmnHwScu7WqzOtDX4wxVx6P9ckgmKOkhhBBCyJTC56CZS1KVTpGDefNn4uiR5oj3Wrl6AZYum8PpPdJda5NrDuxvxOHDjfjinAVSqQTrvrwId917Y9rnRSWuCSU9hBBCCJly+EwGkiVVH+47iW1v1sNhd0JTqMLd994Yt8hBeDEEiVSMpTfMwdpbaiM2Rp3sg/fODgt27WyAVOqD1eqA0+nBC8/vBgDcde+NcV+fqM35KnFNydTEQUkPIYQQQkiWxUtKOjss2PriHvT0DEAsFqGvz46tL+6JqRwXr8Jc06kLWHtL7XifRtalkyTYrIPotw5CmS+CCIBWm4/+/mHs2X0MS5fN4ZTY8FniOlv7IJHxQdXbCCGEEDJldHZYcLrpIudqatnU0tyOrk4b5HIJ1Gol5HIJujptaGluj3hduhXmJooP953EM5vfwu//+x08s/ktfLjvZNLX6/RqyGQSeDw+KPJkcLu9UCrl8Pn8EW2RrGIeX22Z6JhdndYxvS/hDyU9hBBCCJkS0h10Zx/j9P3JWJY5k1Le5lIDbr71ekjEYvT3D4MxQKtVQ6tTR7RFssSGr7acrInpZEZJDyGEEEImvbHun5MN1TXlKDHr4fH4MTjogsfjR0mpHtU15RGvy3QPm1yWaZLw1bu/hJtvrcWMGcUwGDQwGDUxbZEsseGrLSdjYjrZ0ZoeQgghhEx62dw/J1PmUgMe3Hgztr1RD4fDCY1Ghbu/tiLu8SdbWeaxlPK+Yflc1C2Zj37bUNy2SFUxj4+2THTMXNoHiUSipIcQQgghk142988Zi3QG4LlWoW0slcrGuqloiVmP0jJjwp+nalc+2nIi7INE/o6SHkIIIYRMemMddGc7llxKZrjIRtlnvp9eCdGuE/FaTlWU9BBCCCFkSphsU8bGSzbLPlOSQIRChQwIIYQQMmWYSw2YO28GDbzTQJXKyGRASQ8hhBBCCEmIKpWRyYCSHkIIIYRMSUJuVJrLottlMpbQJlMPrekhhBBCyJSTjYX5k1GidqH1UGSi4+1Jz7lz53D77bfDYDBAo9Fg+fLl+PDDD/k6HCGEEJIS9U0EyI2NSnNRqnah9VBkIuMt6dmwYQN8Ph8++OADHD9+HPPnz8eGDRvQ3d3N1yEJIYSQpKhvIgAtzE+E2oVMZrwkPRaLBefPn8emTZswb948VFVV4Ze//CWcTidOnz7NxyEJIYSQpKhvIkG0MD8+r9eHQCCA9rY+ahcy6fCypkev16O6uhqvvPIKrrvuOigUCmzZsgUmkwm1tbUJf8/tdsPtdof+bbfbAQADAwN8hJl1gUAADocDcrkcYnHu14igePlF8fKL4uVX8P+7jDFhA8ki6psmxmdvPOJV5Utx06prsOf9T/HF53YoVQqsu3URVPnStK+rkO3b3WVDv20QWp0a00p0nH4nUbwHDzRhz/ufwmazwW53oqenDyVmfcbtko5k50GfX35NtHjH1DcxnrS1tbHa2lomEomYRCJhJSUl7MSJE0l/54knnmAA6Iu+6Iu+6CtHvr744gu+uglBUN9EX/RFX/Q18b8y6ZtEjHFPlTZt2oTNmzcnfc3Zs2dRXV2NO+64A16vF48//jiUSiVeeOEFbN++HceOHUNJSUnc342+mzYwMIDKykq0traisLCQa5iCcTgcKC8vR1tbGzQajdDhpETx8ovi5RfFyy+73Y6Kigr09/ejqKhI6HCSor4puYn22aN4+UXx8ovi5ddY+qa0kp6+vj5Yrdakr5k5cyYOHjyIm2++Gf39/RENWFVVhY0bN2LTpk2cjudwOFBYWAi73T4hLgTFyy+Kl18UL78oXv5Q35QcxcsvipdfFC+/plK8aa3pMRqNMBqNKV/ndDoBIGZuoFgsRiAQSOeQhBBCSFLUNxFCCEmFlxVLS5cuhVarxQMPPIBTp07h3Llz+PGPf4yLFy9i/fr1fBySEEIISYr6JkIImbp4SXoMBgPef/99DA0NYdWqVbj++utx6NAhvPvuu5g/fz7n91EoFHjiiSegUCj4CDPrKF5+Ubz8onj5RfEKj/omipcPFC+/KF5+TaV401rTQwghhBBCCCETTe4X5CaEEEIIIYSQMaCkhxBCCCGEEDKpUdJDCCGEEEIImdQo6SGEEEIIIYRMahMm6Tl37hxuv/12GAwGaDQaLF++HB9++KHQYSW1a9cu1NXVQalUQqvV4o477hA6JE7cbjcWLFgAkUiExsZGocOJ69KlS9i4cSNmzJgBpVKJq666Ck888QQ8Ho/QoYX8z//8D6ZPn468vDzU1dXh6NGjQocU11NPPYVFixZBrVbDZDLhjjvuQEtLi9BhcfbLX/4SIpEI//zP/yx0KAl1dHTgm9/8JvR6PZRKJa699lp8+umnQocVl9/vx7/9279F/G397Gc/A9W8iY/6pvFB/VL2UN/Ev4nQLwFTr2+aMEnPhg0b4PP58MEHH+D48eOYP38+NmzYgO7ubqFDi+vtt9/G/fffj29961s4deoUPv74Y/zDP/yD0GFx8pOf/ARms1noMJJqbm5GIBDAli1bcObMGfzXf/0Xnn/+efzrv/6r0KEBAN544w386Ec/whNPPIETJ05g/vz5WLduHXp7e4UOLcZHH32Ehx9+GEeOHMHevXvh9Xpx8803Y3h4WOjQUjp27Bi2bNmCefPmCR1KQv39/Vi2bBlkMhnee+89fPbZZ3jmmWeg1WqFDi2uzZs347nnnsPvf/97nD17Fps3b8avfvUrPPvss0KHlpOobxof1C9lB/VN/JsI/RIwRfsmNgH09fUxAKy+vj70PYfDwQCwvXv3ChhZfF6vl5WWlrIXXnhB6FDStnv3blZTU8POnDnDALCTJ08KHRJnv/rVr9iMGTOEDoMxxtjixYvZww8/HPq33+9nZrOZPfXUUwJGxU1vby8DwD766COhQ0lqcHCQVVVVsb1797IVK1awRx55ROiQ4nrsscfY8uXLhQ6Ds/Xr17Nvf/vbEd+788472Te+8Q2BIspd1DeND+qXsof6Jn5NlH6JsanZN02IJz16vR7V1dV45ZVXMDw8DJ/Phy1btsBkMqG2tlbo8GKcOHECHR0dEIvFWLhwIUpKSnDrrbfi9OnTQoeWVE9PD7773e/ij3/8I1QqldDhpM1ut0On0wkdBjweD44fP441a9aEvicWi7FmzRocPnxYwMi4sdvtAJATbZnMww8/jPXr10e0cy7avn07rr/+etxzzz0wmUxYuHAh/vd//1fosBK64YYbsH//fpw7dw4AcOrUKRw6dAi33nqrwJHlHuqb+Ef9UvZQ38S/idIvAVO0b8p2JsaXtrY2Vltby0QiEZNIJKykpISdOHFC6LDiev311xkAVlFRwbZt28Y+/fRT9vWvf53p9XpmtVqFDi+uQCDAbrnlFvazn/2MMcbYxYsXJ9QdtfPnzzONRsP+8Ic/CB0K6+joYADYJ598EvH9H//4x2zx4sUCRcWN3+9n69evZ8uWLRM6lKRef/11NnfuXOZyuRhjLKfvqCkUCqZQKNhPf/pTduLECbZlyxaWl5fHtm7dKnRocfn9fvbYY48xkUjEpFIpE4lE7Be/+IXQYeUs6pv4Q/1SdlHfxK+J1C8xNjX7JkGTnscee4wBSPp19uxZFggE2G233cZuvfVWdujQIXb8+HH20EMPsdLSUtbZ2Zlz8b722msMANuyZUvod0dGRpjBYGDPP//8uMWbTsy//e1v2bJly5jP52OMCde5cI03XHt7O7vqqqvYxo0bxzXWRCZyx/L973+fVVZWsra2NqFDSai1tZWZTCZ26tSp0PdyuXORyWRs6dKlEd/74Q9/yJYsWSJQRMm9/vrrrKysjL3++uusqamJvfLKK0yn0+VsR8gH6ptyI17ql7KL+ib+TLR+ibGp2TeJGBOuJE9fXx+sVmvS18ycORMHDx7EzTffjP7+fmg0mtDPqqqqsHHjRmzatInvUAFwj/fjjz/GqlWrcPDgQSxfvjz0s7q6OqxZswY///nP+Q41hGvM9957L3bs2AGRSBT6vt/vh0QiwTe+8Q28/PLLfIcKgHu8crkcANDZ2YmbbroJS5YswdatWyEWCz9j0+PxQKVSYdu2bRFVkR544AEMDAzg3XffFS64JH7wgx/g3XffRX19PWbMmCF0OAm98847+OpXvwqJRBL6nt/vh0gkglgshtvtjviZ0CorK7F27Vq88MILoe8999xzePLJJ9HR0SFgZPGVl5dj06ZNePjhh0Pfe/LJJ/Hqq6+iublZwMjGD/VN/KJ+SRjUN/FnovVLwNTsm6R8BceF0WiE0WhM+Tqn0wkAMf/jEIvFCAQCvMQWD9d4a2troVAo0NLSEupYvF4vLl26hMrKSr7DjMA15t/97nd48sknQ//u7OzEunXr8MYbb6Curo7PECNwjRcYLbW4cuVK1NbW4qWXXsqZjkUul6O2thb79+8PdSyBQAD79+/HD37wA2GDi4Mxhh/+8If4y1/+ggMHDuRspxK0evVq/O1vf4v43re+9S3U1NTgsccey7mOZdmyZTFlVs+dOzfu/y/gyul0xvwtSSSScf1/rdCob+IX9UvCoL6JPxOtXwKmaN/E01OorOrr62N6vZ7deeedrLGxkbW0tLB/+Zd/YTKZjDU2NgodXlyPPPIIKy0tZXv27GHNzc1s48aNzGQyMZvNJnRonOT63On29nY2a9Ystnr1atbe3s66urpCX7ngT3/6E1MoFGzr1q3ss88+Y//0T//EioqKWHd3t9ChxXjooYdYYWEhO3DgQEQ7Op1OoUPjLJenERw9epRJpVL285//nJ0/f5699tprTKVSsVdffVXo0OJ64IEHWGlpKdu5cye7ePEi+/Of/8wMBgP7yU9+InRoOYf6pvFF/dLYUd80fnK5X2JsavZNEyLpYYyxY8eOsZtvvpnpdDqmVqvZkiVL2O7du4UOKyGPx8MeffRRZjKZmFqtZmvWrGGnT58WOizOcr1zeemllxLOrc4Vzz77LKuoqGByuZwtXryYHTlyROiQ4krUji+99JLQoXGW653Ljh072Ny5c5lCoWA1NTU5s7A5HofDwR555BFWUVHB8vLy2MyZM9njjz/O3G630KHlJOqbxg/1S9lBfdP4yPV+ibGp1zcJuqaHEEIIIYQQQviWO5NNCSGEEEIIIYQHlPQQQgghhBBCJjVKegghhBBCCCGTGiU9hBBCCCGEkEmNkh5CCCGEEELIpEZJDyGEEEIIIWRSo6SHEEIIIYQQMqlR0kMIIYQQQgiZ1CjpIYQQQgghhExqlPQQQgghhBBCJjVKegghhBBCCCGTGiU9hBBCCCGEkEnt/wNpOqZKJyt3iwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -128,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -216,21 +229,165 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================\n", - "torch.Size([1001]) torch.float32 cpu\n", - "torch.Size([1001, 4000, 2]) torch.float32 cpu\n", - "torch.Size([1001, 4000, 2]) torch.float32 cpu\n", - "torch.Size([4000, 2]) torch.float32 cpu\n", - "torch.Size([4000, 2]) torch.float32 cpu\n", - "====================\n", - "torch.Size([4000000, 1, 2]) torch.float32 cpu\n", - "torch.Size([4000000, 1, 1]) torch.float32 cpu\n", - "torch.Size([4000000, 1, 2]) torch.float32 cpu\n", - "torch.Size([4000000, 1, 2]) torch.float32 cpu\n" - ] + "data": { + "text/html": [ + "
====================\n",
+       "
\n" + ], + "text/plain": [ + "====================\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([1001])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m1001\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([1001, 4000, 2])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m1001\u001b[0m, \u001b[1;36m4000\u001b[0m, \u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([1001, 4000, 2])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m1001\u001b[0m, \u001b[1;36m4000\u001b[0m, \u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([4000, 2])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m4000\u001b[0m, \u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([4000, 2])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m4000\u001b[0m, \u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
====================\n",
+       "
\n" + ], + "text/plain": [ + "====================\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([4000000, 1, 2])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m4000000\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([4000000, 1, 1])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m4000000\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([4000000, 1, 2])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m4000000\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
torch.Size([4000000, 1, 2])\n",
+       "torch.float32 cpu\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mtorch.Size\u001b[0m\u001b[1m(\u001b[0m\u001b[1m[\u001b[0m\u001b[1;36m4000000\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m\u001b[1m)\u001b[0m\n", + "torch.float32 cpu\n" + ] + }, + "metadata": {}, + "output_type": "display_data" }, { "data": { @@ -263,22 +420,18 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "==========model==========\n", - "batch_szie:1000, channel:1, length:7\n", - "MLP(\n", - " (fcin): Linear(in_features=5, out_features=512, bias=True)\n", - " (fcs): ModuleList(\n", - " (0): Linear(in_features=512, out_features=512, bias=True)\n", - " (1): Linear(in_features=512, out_features=512, bias=True)\n", - " (2): Linear(in_features=512, out_features=512, bias=True)\n", - " (3): Linear(in_features=512, out_features=512, bias=True)\n", - " )\n", - " (fcout): Linear(in_features=512, out_features=2, bias=True)\n", - " (relu): ReLU()\n", - ")\n" + "ename": "RuntimeError", + "evalue": "CUDA error: out of memory\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[7], line 9\u001b[0m\n\u001b[1;32m 6\u001b[0m train_ds \u001b[39m=\u001b[39m BBdataset(raw_data)\n\u001b[1;32m 7\u001b[0m train_dl \u001b[39m=\u001b[39m DataLoader(train_ds, batch_size\u001b[39m=\u001b[39mbatch_size, shuffle\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[0;32m----> 9\u001b[0m model \u001b[39m=\u001b[39m MLP(input_dim\u001b[39m=\u001b[39;49m\u001b[39m5\u001b[39;49m, output_dim\u001b[39m=\u001b[39;49m\u001b[39m2\u001b[39;49m, hidden_layers\u001b[39m=\u001b[39;49m\u001b[39m4\u001b[39;49m, hidden_dim\u001b[39m=\u001b[39;49m\u001b[39m512\u001b[39;49m)\u001b[39m.\u001b[39;49mto(device)\n\u001b[1;32m 10\u001b[0m optimizer \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39moptim\u001b[39m.\u001b[39mAdam(model\u001b[39m.\u001b[39mparameters(), lr\u001b[39m=\u001b[39mlr)\n\u001b[1;32m 11\u001b[0m loss_fn \u001b[39m=\u001b[39m nn\u001b[39m.\u001b[39mMSELoss()\n", + "File \u001b[0;32m~/miniconda3/envs/sde/lib/python3.11/site-packages/torch/nn/modules/module.py:1145\u001b[0m, in \u001b[0;36mModule.to\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1141\u001b[0m \u001b[39mreturn\u001b[39;00m t\u001b[39m.\u001b[39mto(device, dtype \u001b[39mif\u001b[39;00m t\u001b[39m.\u001b[39mis_floating_point() \u001b[39mor\u001b[39;00m t\u001b[39m.\u001b[39mis_complex() \u001b[39melse\u001b[39;00m \u001b[39mNone\u001b[39;00m,\n\u001b[1;32m 1142\u001b[0m non_blocking, memory_format\u001b[39m=\u001b[39mconvert_to_format)\n\u001b[1;32m 1143\u001b[0m \u001b[39mreturn\u001b[39;00m t\u001b[39m.\u001b[39mto(device, dtype \u001b[39mif\u001b[39;00m t\u001b[39m.\u001b[39mis_floating_point() \u001b[39mor\u001b[39;00m t\u001b[39m.\u001b[39mis_complex() \u001b[39melse\u001b[39;00m \u001b[39mNone\u001b[39;00m, non_blocking)\n\u001b[0;32m-> 1145\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_apply(convert)\n", + "File \u001b[0;32m~/miniconda3/envs/sde/lib/python3.11/site-packages/torch/nn/modules/module.py:797\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn)\u001b[0m\n\u001b[1;32m 795\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_apply\u001b[39m(\u001b[39mself\u001b[39m, fn):\n\u001b[1;32m 796\u001b[0m \u001b[39mfor\u001b[39;00m module \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mchildren():\n\u001b[0;32m--> 797\u001b[0m module\u001b[39m.\u001b[39;49m_apply(fn)\n\u001b[1;32m 799\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[1;32m 800\u001b[0m \u001b[39mif\u001b[39;00m torch\u001b[39m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[1;32m 801\u001b[0m \u001b[39m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[1;32m 802\u001b[0m \u001b[39m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 807\u001b[0m \u001b[39m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[1;32m 808\u001b[0m \u001b[39m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/sde/lib/python3.11/site-packages/torch/nn/modules/module.py:820\u001b[0m, in \u001b[0;36mModule._apply\u001b[0;34m(self, fn)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[39m# Tensors stored in modules are graph leaves, and we don't want to\u001b[39;00m\n\u001b[1;32m 817\u001b[0m \u001b[39m# track autograd history of `param_applied`, so we have to use\u001b[39;00m\n\u001b[1;32m 818\u001b[0m \u001b[39m# `with torch.no_grad():`\u001b[39;00m\n\u001b[1;32m 819\u001b[0m \u001b[39mwith\u001b[39;00m torch\u001b[39m.\u001b[39mno_grad():\n\u001b[0;32m--> 820\u001b[0m param_applied \u001b[39m=\u001b[39m fn(param)\n\u001b[1;32m 821\u001b[0m should_use_set_data \u001b[39m=\u001b[39m compute_should_use_set_data(param, param_applied)\n\u001b[1;32m 822\u001b[0m \u001b[39mif\u001b[39;00m should_use_set_data:\n", + "File \u001b[0;32m~/miniconda3/envs/sde/lib/python3.11/site-packages/torch/nn/modules/module.py:1143\u001b[0m, in \u001b[0;36mModule.to..convert\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 1140\u001b[0m \u001b[39mif\u001b[39;00m convert_to_format \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m t\u001b[39m.\u001b[39mdim() \u001b[39min\u001b[39;00m (\u001b[39m4\u001b[39m, \u001b[39m5\u001b[39m):\n\u001b[1;32m 1141\u001b[0m \u001b[39mreturn\u001b[39;00m t\u001b[39m.\u001b[39mto(device, dtype \u001b[39mif\u001b[39;00m t\u001b[39m.\u001b[39mis_floating_point() \u001b[39mor\u001b[39;00m t\u001b[39m.\u001b[39mis_complex() \u001b[39melse\u001b[39;00m \u001b[39mNone\u001b[39;00m,\n\u001b[1;32m 1142\u001b[0m non_blocking, memory_format\u001b[39m=\u001b[39mconvert_to_format)\n\u001b[0;32m-> 1143\u001b[0m \u001b[39mreturn\u001b[39;00m t\u001b[39m.\u001b[39;49mto(device, dtype \u001b[39mif\u001b[39;49;00m t\u001b[39m.\u001b[39;49mis_floating_point() \u001b[39mor\u001b[39;49;00m t\u001b[39m.\u001b[39;49mis_complex() \u001b[39melse\u001b[39;49;00m \u001b[39mNone\u001b[39;49;00m, non_blocking)\n", + "\u001b[0;31mRuntimeError\u001b[0m: CUDA error: out of memory\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n" ] } ], @@ -475,7 +628,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.16" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/test.py b/test.py index 5e197ae..40e81bd 100644 --- a/test.py +++ b/test.py @@ -48,7 +48,8 @@ def main(): parser.add_argument('--batch_size', type=int, default=8000) parser.add_argument('-n','--normalize', action='store_true') parser.add_argument('--tarined_data', action='store_true') - + parser.add_argument('--filter_number', type=int) + args = parser.parse_args() check_model_task(args) @@ -58,7 +59,13 @@ def main(): torch.cuda.manual_seed_all(seed) np.random.seed(seed) - experiment_name = args.task + experiment_name = args.task + if args.change_epsilons: + experiment_name += '_change_epsilons' + if args.filter_number is not None and 'mnist' in args.task: + experiment_name += f'_filter{args.filter_number}' + + log_dir = Path('experiments') / experiment_name / 'test' / tt.strftime("%Y-%m-%d/%H_%M_%S/") ds_cached_dir = Path('experiments') / experiment_name / 'data' log_dir.mkdir(parents=True, exist_ok=True) diff --git a/train.py b/train.py index 4c248da..409dda8 100644 --- a/train.py +++ b/train.py @@ -144,12 +144,12 @@ def main_worker(args): TimeElapsedColumn(), transient=False, ) as progress: - task1 = progress.add_task("[gold]Training whole dataset (lr: X) (loss=X)", total=ds_info['nums_sub_ds']*args.epoch_nums) + task1 = progress.add_task("[red]Training whole dataset (lr: X) (loss=X)", total=ds_info['nums_sub_ds']*args.epoch_nums) while not progress.finished: if ds_info['nums_sub_ds'] == 1: new_dl = read_ds_from_pkl(args, real_metadata, - args.ds_cached_dir / f"new_ds_{int(iter%ds_info['nums_sub_ds'])}.pkl" + args.ds_cached_dir / f"new_ds_0.pkl" ) for iter in range(ds_info['nums_sub_ds']*args.epoch_nums): if ds_info['nums_sub_ds'] > 1: @@ -158,7 +158,7 @@ def main_worker(args): args.ds_cached_dir / f"new_ds_{int(iter%ds_info['nums_sub_ds'])}.pkl" ) - task2 = progress.add_task(f"[green]Training sub dataset {int(iter%ds_info['nums_sub_ds'])}", total=args.iter_nums) + task2 = progress.add_task(f"[dark_orange]Training sub dataset {int(iter%ds_info['nums_sub_ds'])}", total=args.iter_nums) for _ in range(args.iter_nums): now_loss = train(args, model ,new_dl, optimizer, scheduler, loss_fn, before_train, after_train) loss_list.append(now_loss) @@ -167,8 +167,8 @@ def main_worker(args): progress.update(task2, visible=False) progress.remove_task(task2) torch.save(model.state_dict(), args.log_dir / f'model_{model.__class__.__name__}_{int(iter)}.pth') - progress.update(task1, advance=1, description="[red]Training whole dataset (l r: %2.5f) (loss=%2.5f)" % (cur_lr, now_loss)) - + progress.update(task1, advance=1, description="[red]Training whole dataset (lr: %2.5f) (loss=%2.5f)" % (cur_lr, now_loss)) + progress.log(f"[green]sub dataset {int(iter%ds_info['nums_sub_ds'])} finished; Loss: {now_loss}") # Draw loss curve fig, ax = plt.subplots(figsize=(10, 5)) ax.plot(loss_list)