-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_VDJ-New.py
305 lines (235 loc) · 11.8 KB
/
prepare_VDJ-New.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# %%
import csv
from datetime import datetime
from pathlib import Path
from typing import List, Tuple, Dict, Union, Optional
import numpy as np
import pandas as pd
from prettytable import PrettyTable
from utils import *
###################### 配置 #######################
# path in ubuntu
ROOT = Path('/data/personal/jiewen.du/CM_new')
SCRIPT = ROOT / 'script'
DATA_HOME = ROOT / 'data'
DATA_DIR = DATA_HOME / 'ymc_copy' # 姚盟成处理后的数据文件
CELL_PASS_DIR = DATA_HOME / 'cell_pass' # 过滤掉非B cells, CDR3为空,非productive BCR细胞的数据文件
FMT19_DIR = DATA_HOME / 'fmt19' # igblast对BCR序列按照AIRR格式进行注释后的结果文件
THRESHOLD_FILE = DATA_HOME/'threshold_CM_20220809.csv'
# path in docker container
CONTAINER = 'immcantation_cm'
WORK_DIR = Path('/data')
CURRENT_DATASET = ['4_new', 43]
VALID_MICE.update({
'CM4_new': [['CM004-2-2-1']],
'CM43': [['CM043-2-1']]
})
statics_header = ['dataset', 'All cells', 'Non-B cells', 'No-Germlines', 'B cells',
'B cells train', 'B cells train clone_pass', 'unique NT train clone_pass',
'B cells train clone_pass_germ_pass', 'unique NT train clone_pass_germ_pass',
'B cells valid', 'B cells valid clone_pass', 'unique NT valid clone_pass',
'B cells valid clone_pass_germ_pass', 'unique NT valid clone_pass_germ_pass'
]
STATISTIC = {}
#############################################
print(datetime.today().strftime("%Y-%m-%d %H:%M:%S"))
today = datetime.today().strftime("%Y%m%d%H%M%S")
"""
## Create docker container
```bash
docker run -ti --runtime=runc --name immcantation_cm --workdir /data -v /data/personal/jiewen.du/CM_new:/data immcantation/suite:4.3.0 /bin/bash
```
"""
"""
## Step1: Cell-pass
过滤掉非B cells, CDR3为空,非productive BCR的细胞数据
备注:
1. CM0~CM8: CM*bcr.samples.IGHV.igblast.tsv均为fmt19格式
2. CM9, CM10: CM*bcr.samples.IGHV.igblast.tsv均为fmt7格式
"""
for dataset in [f'CM{i}' for i in CURRENT_DATASET]:
df0 = pd.read_csv(DATA_DIR/f'{dataset}.TSM_VS_VMM_all.bcr.samples.IGHV.igblast.tsv', sep='\t')
df = df0.loc[df0['celltype'].isin(BTYPE.keys()), :].copy(True)
print('Source: {:<6} | Cells: {:<6} | Non-Bcells: {:<6} '.format(dataset, df0.shape[0], df0.shape[0]-df.shape[0]), end='')
df.reset_index(drop=True, inplace=True)
df['mice_index'] = df['sequence_id'].apply(lambda x: x.split('.')[-1])
droped_idx1 = df.loc[(df['cdr3']=='')|(df['cdr3']=='None')|(df['cdr3']=='NA')|(df['cdr3']==None)|(df['cdr3'].isna()), :].index
df.drop(index=droped_idx1, inplace=True)
df.reset_index(drop=True, inplace=True)
droped_idx2 = df.loc[df['productive']==False, :].index
df.drop(index=droped_idx2, inplace=True)
# 2: fix wrong dtype
df = fix_wrong_dtype(df)
df = df.where(pd.notna(df), None)
df.to_csv(CELL_PASS_DIR/f'{dataset}.fmt7', sep='\t', index=None, na_rep='')
with open(CELL_PASS_DIR/f'{dataset}.fasta', 'w') as f:
for row in df.loc[:, ['sequence_id', 'sequence']].itertuples(False):
f.write(f'>{row[0]}\n')
f.write(f'{row[1]}\n')
print('| Null CDR3: {:<6} | Non-productives: {:<6} | Cell-pass: {:<6}'.format(len(droped_idx1), len(droped_idx1), df.shape[0]))
statistic[dataset] = [dataset, df0.shape[0], df0.shape[0]-df.shape[0]]
# %%
"""
## Step2: Run igblastn(v1.17.0)
使用igblast对BCR序列按照AIRR格式进行注释,得到CDR和framework各区域的序列
"""
for dataset in [f'CM{i}' for i in CURRENT_DATASET]:
fasta = CELL_PASS_DIR/f'{dataset}.fasta'
run_igblast(fasta, fmt=19, threds=40)
"""
## Step3: Check db
过滤igblastn结果中的错误比对序列(germline_alignment为空),输出为*fixed.tsv文件;如果没有比对错误,则不输出*fixed.tsv文件
"""
for dataset in [f'CM{i}' for i in CURRENT_DATASET]:
ifile = CELL_PASS_DIR/f'{dataset}.fmt7'
df = pd.read_csv(ifile, sep='\t')
df = fix_wrong_dtype(df)
droped_idx1 = df.loc[df['germline_alignment'].isna(),:].index
droped_idx2 = df.loc[df['d_germline_start']>=df['d_germline_end'],:].index
print('Source: {:<10} | Null germline_alignment: {:<6} | d_start > d_end: {:<6} | Passed-cells: {:<6}'.format(dataset, len(droped_idx1), len(droped_idx2), df.shape[0]-len(droped_idx1)))
statistic[dataset].extend([len(droped_idx1), df.shape[0]-len(droped_idx1)])
if len(droped_idx1)!=0 or len(droped_idx2)!=0:
df.drop(index=droped_idx1,inplace=True)
df.to_csv(CELL_PASS_DIR/f'{dataset}_fixed.tsv', sep='\t', index=None, na_rep='')
print(statistic)
# %%
"""
## Step4: split sequences to train and valid
将一个课题的B细胞分为一次流式和二次流式,供后续分别做clonotype聚类和germline推断
"""
for dataset in [f'CM{i}' for i in CURRENT_DATASET]:
ifile = CELL_PASS_DIR/f'{dataset}_fixed.tsv'
if not ifile.exists():
ifile = CELL_PASS_DIR/f'{dataset}.fmt7'
df = pd.read_csv(ifile, sep='\t')
# df['mice_index'] = df['sequence_id'].apply(lambda x: x.split('.')[1])
df = fix_wrong_dtype(df)
df_tp = df.loc[df['mice_index'].isin(VALID_MICE[dataset][0]), :]
if len(VALID_MICE[dataset])>1:
df_tn = df.loc[df['mice_index'].isin(VALID_MICE[dataset][1]), :]
df_t = df.loc[(~df.index.isin(df_tp.index))&(~df.index.isin(df_tn.index)), :]
df_tn.to_csv(CELL_PASS_DIR/f'{dataset}_valid_tn.tsv', sep='\t', index=None, na_rep='')
df_tp.to_csv(CELL_PASS_DIR/f'{dataset}_valid_tp.tsv', sep='\t', index=None, na_rep='')
else:
df_t = df.loc[~df.index.isin(df_tp.index), :]
df_tp.to_csv(CELL_PASS_DIR/f'{dataset}_valid.tsv', sep='\t', index=None, na_rep='')
df_t.to_csv(CELL_PASS_DIR/f'{dataset}_train.tsv', sep='\t', index=None, na_rep='')
print('Source: {:<6} | DB-pass: {:<6} | Train cells: {:<6d} | Valid cells: {:<6d}'.format(dataset, df.shape[0], df_t.shape[0], df_tp.shape[0]))
"""
## Step5.1: Find optimal distance threshold
找到最优的clonotype聚类阈值
"""
# %%
sh_file = SCRIPT / 'find_threshold.sh'
sh_out = SCRIPT / f'log/slurm_find_threshold.out'
with open(sh_file, 'w') as f:
f.write('#!/bin/bash\n\n')
f.write('#SBATCH -n 1 # 指定核心数量\n')
f.write('#SBATCH -N 1 # 指定node的数量\n')
f.write('#SBATCH -t 0-02:00 # 运行总时间,天数-小时数-分钟, D-HH:MM\n')
f.write('#SBATCH --mem=5G # 所有核心可以使用的内存池大小, MB为单位\n')
f.write(f'#SBATCH -o {sh_out} # 把输出结果STDOUT保存在哪一个文件\n')
f.write('#SBATCH --nodelist=ab03\n\n')
f.write("docker start {}\n".format(CONTAINER))
now = datetime.now().strftime('%Y%m%d%H%M%S')
stdout = WORK_DIR / f'data/log/findThreshold_{now}.out'
code = f'''docker exec {CONTAINER} /bin/bash -c "(time Rscript findThreshold.r) > {stdout} 2>&1"\n'''
f.write('{}\n'.format(code))
os.system(f'sbatch {sh_file}')
# %%
"""
## Step5.2: Define clones
进行clonotype聚类
"""
df = pd.read_csv(THRESHOLD_FILE)
for row in df.iloc[66:, :].itertuples(False):
if pd.isna(row[1]):
print(f'No threshold of {row[0]}')
continue
print(row[0])
define_clones(Path(row[0]), row[1], CONTAINER, True)
# %%
"""
## Step6: Infer germline sequence
为每个clonotype推断其germline sequence
"""
for dataset in [f'CM{i}' for i in CURRENT_DATASET]:
dbs = (DATA_HOME/'clones').glob(f'{dataset}*')
for db in dbs:
db_in_docker = WORK_DIR/'data/clones' / db.name
create_germline(db_in_docker, CONTAINER, True)
# %%
"""
## Step7: Merge *_aa columns in fmt19 with *clone_pass_germ-pass.tsv
合并fmt19格式的注释信息与fmt7格式的文件,得到完整注释信息的序列文件
"""
for dataset in [f'CM{i}' for i in CURRENT_DATASET]:
# if dataset=='CM00':
# germ_f = HOME/f'clones/{dataset}_train-db_pass_clone-pass_germ-pass.tsv'
# else:
# germ_f = HOME/f'clones/{dataset}_valid-db_pass_clone-pass_germ-pass.tsv'
db = DATA_HOME/f'fmt19/{dataset}.fmt19'
df_fmt19 = pd.read_csv(db, sep='\t')
cols = [i for i in df_fmt19.columns if i.find('_aa')>=0]
cols.remove('junction_aa')
cols.append('sequence_id')
germ_files = (DATA_HOME/'clones').glob(f'{dataset}*germ-pass*')
for germ_f in germ_files:
df = pd.read_csv(germ_f, sep='\t')
df2 = pd.merge(df, df_fmt19.loc[:, cols], on='sequence_id', how='left')
df2 = fix_wrong_dtype(df2)
df2.to_csv(germ_f.parent/f'{germ_f.stem}_merged.tsv', sep='\t', index=None, na_rep='')
print('Source: {:<6} | File: {:<} | Source shape: {:<6d} | Merged shape: {:<6d}'.format(dataset, germ_f.stem, df.shape[0], df2.shape[0]))
# %%
"""
## Last setp: 统计处理完的细胞及序列数量
"""
for dataset in [f'CM{i}' for i in CURRENT_DATASET]:
clone_f_train = DATA_HOME/f'clones/{dataset}_train-clone_pass.tsv'
germ_f_train = DATA_HOME/f'clones/{dataset}_train-clone_pass_germ-pass.tsv'
df_clone_train = pd.read_csv(clone_f_train, sep='\t')
df_germ_train = pd.read_csv(germ_f_train, sep='\t')
clone_f_valid = DATA_HOME/f'clones/{dataset}_valid-clone_pass.tsv'
germ_f_valid = DATA_HOME/f'clones/{dataset}_valid-clone_pass_germ-pass.tsv'
if clone_f_valid.exists():
df_clone_valid = pd.read_csv(clone_f_valid, sep='\t')
df_germ_valid = pd.read_csv(germ_f_valid, sep='\t')
statistic[dataset].extend([df_clone_train.shape[0],
df_clone_train.shape[0],
len(set(df_clone_train.sequence_alignment)),
df_germ_train.shape[0],
len(set(df_germ_train.sequence_alignment)),
df_clone_valid.shape[0],
df_clone_valid.shape[0],
len(set(df_clone_valid.sequence_alignment)),
df_germ_valid.shape[0],
len(set(df_germ_valid.sequence_alignment))])
else:
clone_f_valid_tp = DATA_HOME/f'clones/{dataset}_valid_tp-clone_pass.tsv'
germ_f_valid_tp = DATA_HOME/f'clones/{dataset}_valid_tp-clone_pass_germ-pass.tsv'
clone_f_valid_tn = DATA_HOME/f'clones/{dataset}_valid_tn-clone_pass.tsv'
germ_f_valid_tn = DATA_HOME/f'clones/{dataset}_valid_tn-clone_pass_germ-pass.tsv'
df_clone_valid_tp = pd.read_csv(clone_f_valid_tp, sep='\t')
df_germ_valid_tp = pd.read_csv(germ_f_valid_tp, sep='\t')
df_clone_valid_tn = pd.read_csv(clone_f_valid_tn, sep='\t')
df_germ_valid_tn = pd.read_csv(germ_f_valid_tn, sep='\t')
statistic[dataset].extend([df_clone_train.shape[0],
df_clone_train.shape[0],
len(set(df_clone_train.sequence_alignment)),
df_germ_train.shape[0],
len(set(df_germ_train.sequence_alignment)),
df_clone_valid_tp.shape[0],
df_clone_valid_tp.shape[0],
len(set(df_clone_valid_tp.sequence_alignment)),
df_germ_valid_tp.shape[0],
len(set(df_germ_valid_tp.sequence_alignment)),
df_clone_valid_tn.shape[0],
df_clone_valid_tn.shape[0],
len(set(df_clone_valid_tn.sequence_alignment)),
df_germ_valid_tn.shape[0],
len(set(df_germ_valid_tn.sequence_alignment))])
print(statistic)
with open(DATA_HOME/'statistic.csv', 'a+') as f:
f_csv = csv.writer(f)
# f_csv.writerow(statics_header)
f_csv.writerows(statistic.values())