forked from yhcc/yolo2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
145 lines (136 loc) · 4.01 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
from keras.models import load_model
from keras.layers import Lambda, Input
from keras.models import Model
from keras.optimizers import SGD
from utils.loss_util import loss_function
from utils.data_util import data_generator
def model_to_train(model_path, optimizer=SGD(0.0001), weight_path=None, anchor_length=5):
"""
helper function to prepare to train
para:
model_path: path to model
optimizer: keras Optimizer instance. Ex. SGD(0.0001), RMsprop(0.001) etc
weight_path: where to load weight, default None, use model_path's weight
return:
model: use to fit. However input should be [y_pred,y1_, y2_, y3_]
"""
darknet = load_model(model_path)
if weight_path!=None:
darknet.load_weights(weight_path)
image_size = darknet.layers[0].input_shape[1:3]
y1_ = Input(shape=(5,))#x,y,w,h
y2_ = Input(shape=(image_size[0]//32, image_size[1]//32, anchor_length, 1))#object_mask
y3_ = Input(shape=(image_size[0]//32, image_size[1]//32, anchor_length, 5))#object_value
image_input = Input(shape=(image_size[0],image_size[1],3))
y_pred = darknet(image_input)
loss_out = Lambda(loss_function, output_shape=(1,))([y_pred,y1_, y2_, y3_])
model = Model(inputs=[image_input, y1_, y2_, y3_],outputs=[loss_out])
# TODO: change to other optimizer
model.compile(optimizer=optimizer,loss=lambda x,y: x*y)
return model, darknet
def train_model(model_path, imageFile, samples_per_epoch=160, save_path='new_model.h5',
nb_epoch=20, nb_classes=80,weight_path=None, batch_size=16, optimizer=SGD(0.0001),
val_imageFile=None, nb_val_samples=None, anchor_length=5, image_size=(416, 416)):
"""
Use to train model. use fit_generator by default
para:
imageFile: ex:/images/imagelist.txt should have the form. origin in top left
image_path, x, y, w, h, class
image_path, x, y, w, h, class
...
ex:
images/image1, 120, 30, 50, 20, 9
model_path: path to model
optimizer: keras Optimizer instance. Ex. SGD(0.0001), RMsprop(0.001) etc
weight_path: where to load weight, default None, use model_path's weight
val_imageFile: same as imageFile but is used for validation
return:
the original model. that's output is (13, 13, 425)
"""
if isinstance(model_path, str):
model = model_to_train(model_path, optimizer, weight_path, anchor_length)
else:
model = model_path[0]
if val_imageFile!=None:
val = data_generator(val_imageFile, batch_size, nb_classes, image_size)
else:
val = None
try:
"""
In case of exception, save the model
"""
model.fit_generator(
data_generator(imageFile, batch_size, nb_classes, image_size),
samples_per_epoch=samples_per_epoch,
nb_epoch=nb_epoch,
verbose=1,
validation_data=val,
nb_val_samples=nb_val_samples)
except Exception, e:
print e
#model.save_weights('exception.h5')
if save_path!=None:
model_path[1].save_weights(save_path)
return model_path[1]
if __name__=='__main__':
pass
#maybe for later use
parser = argparse.ArgumentParser(
description='Used to train model')
parser.add_argument(
'model_path',
help='Where to load model')
parser.add_argument(
'imageFile',
help='Where to find txt file contain training image information')
parser.add_argument(
'-spe',
'--samples_per_epoch',
help='samples per epoch, used in fit_generator')
parser.add_argument(
'-sp',
'--save_path',
help='where to save the trained weights',
default=None)
parser.add_argument(
'-ne',
'--nb_epoch',
help='number of epoch to train',
default=20)
parser.add_argument(
'-nc',
'--nb_classes',
help='number of classes',
default=80)
parser.add_argument(
'-wp',
'--weight_path',
help='where to load weight',
default=None)
parser.add_argument(
'-bs',
'--batch_size',
help='batch size',
default=16)
parser.add_argument(
'-o',
'--optimizer',
help='what optimizer to use.',
default='SGD')
parser.add_argument(
'-lr',
'--learning_rate',
help='learning_rate',
type=float,
default=0.00001)
parser.add_argument(
'-vi',
'--val_imageFile',
help='validation imageFile.txt',
default=None)
parser.add_argument(
'-nbs',
'--nb_val_samples',
help='number of validation image',
default=None)