-
Notifications
You must be signed in to change notification settings - Fork 12
/
pretrainer.py
171 lines (143 loc) · 5.21 KB
/
pretrainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from models import *
from utils import progress_bar
import dataset
def __train_epoch(net, trainloader, device, criterion, optimizer):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx,
len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(train_loss / (batch_idx + 1), 100. * correct / total,
correct, total))
def __test_epoch(net, testloader, device, criterion):
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx,
len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(test_loss / (batch_idx + 1), 100. * correct / total,
correct, total))
# Save checkpoint.
acc = 100. * correct / total
return acc
def _pretrain(args):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0.0
start_epoch = args.start_epoch
# Data
print('==> Preparing data..')
trainloader, testloader = dataset.get_loader()
# Model
print('==> Building model..')
if args.network == 'vgg':
net = VGG('VGG16')
elif args.network == 'studentnet':
net = StudentNet()
else:
raise NotImplementedError()
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir(
'checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/{}.pth'.format(args.model_name))
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
if args.optimizer == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9)
elif args.optimizer == 'sgd-cifar10':
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9)
elif args.optimizer == 'adam':
optimizer = optim.Adam(net.parameters(), lr=args.lr)
else:
raise NotImplementedError()
for epoch_idx in range(start_epoch, start_epoch + args.n_epoch):
print('\nEpoch: %d' % epoch_idx)
__train_epoch(net, trainloader, device, criterion, optimizer)
acc = __test_epoch(net, testloader, device, criterion)
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch_idx,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/{}.pth'.format(args.model_name))
best_acc = acc
if args.optimizer == 'sgd-cifar10':
if epoch_idx == 150:
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
elif epoch_idx == 250:
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
def main():
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Pretraining')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument(
'--start_epoch', default=1, type=int, help='start epoch')
parser.add_argument('--n_epoch', default=300, type=int, help='epoch')
parser.add_argument(
'--model_name',
default='test',
# default='ckpt',
# default='student-scratch',
# default='student-scratch-sgd-cifar10',
type=str,
help='name for model')
parser.add_argument(
'--optimizer',
default='sgd',
choices=['sgd', 'adam', 'sgd-cifar10'],
type=str,
help='name for optimizer')
parser.add_argument(
'--network',
default='vgg',
choices=['vgg', 'studentnet'],
type=str,
help='name for network')
parser.add_argument(
'--resume', '-r', action='store_true', help='resume from checkpoint')
args = parser.parse_args()
if args.optimizer == 'sgd-cifar10':
args.n_epoch = 300
args.lr = 0.1
_pretrain(args)
if __name__ == '__main__':
main()