diff --git a/.gitignore b/.gitignore index fd83840..4895238 100644 --- a/.gitignore +++ b/.gitignore @@ -4,5 +4,5 @@ Results/ CSV_Files/ Configurations/ run/ -src/script_ICC.jl +src/script_ICC_A.jl src/script.jl \ No newline at end of file diff --git a/src/script.jl b/src/script.jl deleted file mode 100644 index 17b5642..0000000 --- a/src/script.jl +++ /dev/null @@ -1,92 +0,0 @@ - -using RiFyFi -using Infiltrator -using RFImpairmentsModels - -include("Augmentation/src/Augmentation.jl") -using .Augmentation - -include("RiFyFi_VDG/src/RiFyFi_VDG.jl") -using .RiFyFi_VDG - -include("RiFyFi_IdF/src/RiFyFi_IdF.jl") -using .RiFyFi_IdF - -include("Results/src/Results.jl") -using .Results - -# Parameters DataBase Synth -name= "Emma_Beta_PM" -nameModel= name -nbRadioTx=6 -NbSignals=1000 -Chunksize = 256 -features="IQsamples" -E="E3" -S="S1" -C="C2"#_20dB" -RFF="all_impairments" -Normalisation=true -pourcentTrain = 0.9 -configuration ="scenario" -seed_model = 234567 -seed_data = 123456 -if E == "E1" || E == "E2" - seed_modelTest = seed_model -else - seed_modelTest = 15987654321 * 100000000 -end -if S == "S1" || S == "S2" - seed_dataTest = seed_data -else - seed_dataTest = 9999246912 * 100000000 -end - -# Augmentation -#nb_Augment=1 -Table_nb_Augment=[1] -augmentationType="sans" -Channel="etu" -Channel_Test="eva" - - -# Network Parameters -Networkname="AlexNet" -NbClass =nbRadioTx -#Chunksize -#NbSignals -Table_Seed_Network= [11]#,44,55] - -# Train Args -η = 1e-5 # learning rate -dr = 0.25 # dropout -batchsize = 64 -epochs = 2000 -use_cuda=true - -savepathbson="" -#for i =1: 1 :size(Table_nb_Augment,1) - nb_Augment = Table_nb_Augment[1] - Augmentation_Value = Augmentation.Data_Augmented_construct(augmentationType=augmentationType,nb_Augment=nb_Augment,Channel=Channel,Channel_Test=Channel_Test) - Param_Data = RiFyFi_VDG.Data_Synth(name,nameModel,nbRadioTx, NbSignals, Chunksize,features,S,E,C,RFF,Normalisation,pourcentTrain,configuration,seed_data,seed_model,seed_dataTest,seed_modelTest,Augmentation_Value) - - setSynthetiquecsv(Param_Data) - #= - for k = 1 :1: size(Table_Seed_Network,1) - Seed_Network= Table_Seed_Network[k] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - savepathbson = RiFyFi.main(Param_Data,Param_Network) #filename is the .pkl file - end - - nameTable = [name] - Seed_Network= Table_Seed_Network[1] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - Results.main(Param_Data,Param_Network,"F1_score",Table_Seed_Network,savepathbson) - Results.main(Param_Data,Param_Network,"Confusion_Matrix",Table_Seed_Network,savepathbson) - -end - - -=# diff --git a/src/script_ICC.jl b/src/script_ICC.jl deleted file mode 100644 index 09094eb..0000000 --- a/src/script_ICC.jl +++ /dev/null @@ -1,328 +0,0 @@ - -using RiFyFi -using Infiltrator -using RFImpairmentsModels - -include("Augmentation/src/Augmentation.jl") -using .Augmentation - -include("RiFyFi_VDG/src/RiFyFi_VDG.jl") -using .RiFyFi_VDG - -include("RiFyFi_IdF/src/RiFyFi_IdF.jl") -using .RiFyFi_IdF - -include("Results/src/Results.jl") -using .Results - -#= -# Parameters DataBase Synth -name= "control_1_fixe" -nameModel= name -nbRadioTx=6 -NbSignals= 1000 -Chunksize = 256 -features="IQsamples" -E="E3" -S="S1" -C="C2"#_20dB" -RFF="all_impairments" -Normalisation=true -pourcentTrain = 0.9 -configuration ="scenario" -seed_model = 234567 -seed_data = 123456 -if E == "E1" || E == "E2" - seed_modelTest = seed_model -else - seed_modelTest = 15987654321 * 100000000 -end -if S == "S1" || S == "S2" - seed_dataTest = seed_data -else - seed_dataTest = 9999246912 * 100000000 -end - -# Augmentation -#nb_Augment=1 -Table_nb_Augment=[1] -augmentationType="sans" -Channel="etu" -Channel_Test="etu" - - -# Network Parameters -Networkname="AlexNet" -NbClass =nbRadioTx -#Chunksize -#NbSignals -Table_Seed_Network= [12,13,14]#,44,55] - -# Train Args -η = 1e-5 # learning rate -dr = 0.25 # dropout -batchsize = 64 -epochs = 2000 -use_cuda=true - -savepathbson="" -for i =1: 1 :size(Table_nb_Augment,1) - nb_Augment = Table_nb_Augment[i] - Augmentation_Value = Augmentation.Data_Augmented_construct(augmentationType=augmentationType,nb_Augment=nb_Augment,Channel=Channel,Channel_Test=Channel_Test) - Param_Data = RiFyFi_VDG.Data_Synth(name,nameModel,nbRadioTx, NbSignals, Chunksize,features,S,E,C,RFF,Normalisation,pourcentTrain,configuration,seed_data,seed_model,seed_dataTest,seed_modelTest,Augmentation_Value) - - setSynthetiquecsv(Param_Data) - - for k = 1 :1: size(Table_Seed_Network,1) - Seed_Network= Table_Seed_Network[k] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - savepathbson = RiFyFi.main(Param_Data,Param_Network) #filename is the .pkl file - end - - nameTable = [name] - Seed_Network= Table_Seed_Network[1] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - Results.main(Param_Data,Param_Network,"F1_score",Table_Seed_Network,savepathbson) - # Results.main(Param_Data,Param_Network,"Confusion_Matrix",Table_Seed_Network,savepathbson) - -end - - - - -name= "control_2_fixe" -nameModel= name - -for i =1: 1 :size(Table_nb_Augment,1) - nb_Augment = Table_nb_Augment[i] - Augmentation_Value = Augmentation.Data_Augmented_construct(augmentationType=augmentationType,nb_Augment=nb_Augment,Channel=Channel,Channel_Test=Channel_Test) - Param_Data = RiFyFi_VDG.Data_Synth(name,nameModel,nbRadioTx, NbSignals, Chunksize,features,S,E,C,RFF,Normalisation,pourcentTrain,configuration,seed_data,seed_model,seed_dataTest,seed_modelTest,Augmentation_Value) - - setSynthetiquecsv(Param_Data) - - for k = 1 :1: size(Table_Seed_Network,1) - Seed_Network= Table_Seed_Network[k] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - savepathbson = RiFyFi.main(Param_Data,Param_Network) #filename is the .pkl file - end - - nameTable = [name] - Seed_Network= Table_Seed_Network[1] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - Results.main(Param_Data,Param_Network,"F1_score",Table_Seed_Network,savepathbson) - # Results.main(Param_Data,Param_Network,"Confusion_Matrix",Table_Seed_Network,savepathbson) - -end - - -name= "control_3_fixe" -nameModel= name - -for i =1: 1 :size(Table_nb_Augment,1) - nb_Augment = Table_nb_Augment[i] - Augmentation_Value = Augmentation.Data_Augmented_construct(augmentationType=augmentationType,nb_Augment=nb_Augment,Channel=Channel,Channel_Test=Channel_Test) - Param_Data = RiFyFi_VDG.Data_Synth(name,nameModel,nbRadioTx, NbSignals, Chunksize,features,S,E,C,RFF,Normalisation,pourcentTrain,configuration,seed_data,seed_model,seed_dataTest,seed_modelTest,Augmentation_Value) - - setSynthetiquecsv(Param_Data) - - for k = 1 :1: size(Table_Seed_Network,1) - Seed_Network= Table_Seed_Network[k] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - savepathbson = RiFyFi.main(Param_Data,Param_Network) #filename is the .pkl file - end - - nameTable = [name] - Seed_Network= Table_Seed_Network[1] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - Results.main(Param_Data,Param_Network,"F1_score",Table_Seed_Network,savepathbson) - # Results.main(Param_Data,Param_Network,"Confusion_Matrix",Table_Seed_Network,savepathbson) - -end - - -name= "control_5_fixe" -nameModel= name - -for i =1: 1 :size(Table_nb_Augment,1) - nb_Augment = Table_nb_Augment[i] - Augmentation_Value = Augmentation.Data_Augmented_construct(augmentationType=augmentationType,nb_Augment=nb_Augment,Channel=Channel,Channel_Test=Channel_Test) - Param_Data = RiFyFi_VDG.Data_Synth(name,nameModel,nbRadioTx, NbSignals, Chunksize,features,S,E,C,RFF,Normalisation,pourcentTrain,configuration,seed_data,seed_model,seed_dataTest,seed_modelTest,Augmentation_Value) - - setSynthetiquecsv(Param_Data) - - for k = 1 :1: size(Table_Seed_Network,1) - Seed_Network= Table_Seed_Network[k] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - savepathbson = RiFyFi.main(Param_Data,Param_Network) #filename is the .pkl file - end - - nameTable = [name] - Seed_Network= Table_Seed_Network[1] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - Results.main(Param_Data,Param_Network,"F1_score",Table_Seed_Network,savepathbson) - # Results.main(Param_Data,Param_Network,"Confusion_Matrix",Table_Seed_Network,savepathbson) - -end - -=# - - -############################### - - -# Parameters DataBase Synth -name= "control_3_fixe" -nameModel= name -nbRadioTx=6 -NbSignals= 1000 -Chunksize = 256 -features="IQsamples" -E="E3" -S="S1" -C="C2"#_20dB" -RFF="all_impairments" -Normalisation=true -pourcentTrain = 0.9 -configuration ="scenario" -seed_model = 234567 -seed_data = 123456 -if E == "E1" || E == "E2" - seed_modelTest = seed_model -else - seed_modelTest = 15987654321 * 100000000 -end -if S == "S1" || S == "S2" - seed_dataTest = seed_data -else - seed_dataTest = 9999246912 * 100000000 -end - -# Augmentation -#nb_Augment=1 -Table_nb_Augment=[2,3,4,6,8,10] -augmentationType="augment" -Channel="etu" -Channel_Test="eva" - - -# Network Parameters -Networkname="AlexNet" -NbClass =nbRadioTx -#Chunksize -#NbSignals -Table_Seed_Network= [12,13,14]#,44,55] - -# Train Args -η = 1e-5 # learning rate -dr = 0.25 # dropout -batchsize = 64 -epochs = 2000 -use_cuda=true - -savepathbson="" - -for i =1: 1 :size(Table_nb_Augment,1) - nb_Augment = Table_nb_Augment[i] - Augmentation_Value = Augmentation.Data_Augmented_construct(augmentationType=augmentationType,nb_Augment=nb_Augment,Channel=Channel,Channel_Test=Channel_Test) - Param_Data = RiFyFi_VDG.Data_Synth(name,nameModel,nbRadioTx, NbSignals, Chunksize,features,S,E,C,RFF,Normalisation,pourcentTrain,configuration,seed_data,seed_model,seed_dataTest,seed_modelTest,Augmentation_Value) - - setSynthetiquecsv(Param_Data) - - for k = 1 :1: size(Table_Seed_Network,1) - Seed_Network= Table_Seed_Network[k] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - RiFyFi.main(Param_Data,Param_Network) #filename is the .pkl file - end - - nameTable = [name] - Seed_Network= Table_Seed_Network[1] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - Results.main(Param_Data,Param_Network,"F1_score",Table_Seed_Network,savepathbson) - # Results.main(Param_Data,Param_Network,"Confusion_Matrix",Table_Seed_Network,savepathbson) - -end - - - -name= "control_5_fixe" -nameModel= name -nbRadioTx=6 -NbSignals= 1000 -Chunksize = 256 -features="IQsamples" -E="E3" -S="S1" -C="C2"#_20dB" -RFF="all_impairments" -Normalisation=true -pourcentTrain = 0.9 -configuration ="scenario" -seed_model = 234567 -seed_data = 123456 -if E == "E1" || E == "E2" - seed_modelTest = seed_model -else - seed_modelTest = 15987654321 * 100000000 -end -if S == "S1" || S == "S2" - seed_dataTest = seed_data -else - seed_dataTest = 9999246912 * 100000000 -end - -# Augmentation -#nb_Augment=1 -Table_nb_Augment=[2,3,4,6,8,10] -augmentationType="augment" -Channel="etu" -Channel_Test="eva" - - -# Network Parameters -Networkname="AlexNet" -NbClass =nbRadioTx -#Chunksize -#NbSignals -Table_Seed_Network= [12,13,14]#,44,55] - -# Train Args -η = 1e-5 # learning rate -dr = 0.25 # dropout -batchsize = 64 -epochs = 2000 -use_cuda=true - -savepathbson="" - -for i =1: 1 :size(Table_nb_Augment,1) - nb_Augment = Table_nb_Augment[i] - Augmentation_Value = Augmentation.Data_Augmented_construct(augmentationType=augmentationType,nb_Augment=nb_Augment,Channel=Channel,Channel_Test=Channel_Test) - Param_Data = RiFyFi_VDG.Data_Synth(name,nameModel,nbRadioTx, NbSignals, Chunksize,features,S,E,C,RFF,Normalisation,pourcentTrain,configuration,seed_data,seed_model,seed_dataTest,seed_modelTest,Augmentation_Value) - - setSynthetiquecsv(Param_Data) - - for k = 1 :1: size(Table_Seed_Network,1) - Seed_Network= Table_Seed_Network[k] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - savepathbson = RiFyFi.main(Param_Data,Param_Network) #filename is the .pkl file - end - - nameTable = [name] - Seed_Network= Table_Seed_Network[1] - Train_args = RiFyFi_IdF.Args(η = η ,dr=dr, epochs= epochs,batchsize=batchsize) - Param_Network = RiFyFi_IdF.Network_struct(;Networkname,NbClass,Chunksize,NbSignals,Seed_Network,Train_args) - Results.main(Param_Data,Param_Network,"F1_score",Table_Seed_Network,savepathbson) - # Results.main(Param_Data,Param_Network,"Confusion_Matrix",Table_Seed_Network,savepathbson) - -end