-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathdemo_transform.py
127 lines (89 loc) · 3.38 KB
/
demo_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
from PIL import Image
import numpy as np
try:
import accimage
except ImportError:
accimage = None
def _is_pil_image(img):
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
class Scale(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
image = self.changeScale(image,self.size)
return image
def changeScale(self, img, size, interpolation=Image.BILINEAR):
ow, oh = size
return img.resize((ow, oh), interpolation)
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
image = self.centerCrop(image,self.size)
return image
def centerCrop(self,image, size):
w1, h1 = image.size
tw, th = size
if w1 == tw and h1 == th:
return image
x1 = int(round((w1 - tw) / 2.))
y1 = int(round((h1 - th) / 2.))
image = image.crop((x1, y1, tw+x1, th+y1))
return image
class ToTensor(object):
"""Convert a ``PIL.Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""
def __call__(self, image):
image = self.to_tensor(image)
return image
def to_tensor(self,pic):
if not(_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1)))
return img.float().div(255)
if accimage is not None and isinstance(pic, accimage.Image):
nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
pic.copyto(nppic)
return torch.from_numpy(nppic)
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float().div(255)
else:
return img
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image):
image = self.normalize(image, self.mean, self.std)
return image
def normalize(self, tensor, mean, std):
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return tensor