-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
100 lines (91 loc) · 4.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from torch.utils.data import DataLoader
import torch.optim as optim
import torch
import time
import math
import numpy as np
import random
import os
from avce_network import AVCE_Model, Single_Model
from avce_dataset import Dataset
from train import avce_train as train
from test import avce_test as test
import option
from utils import Prepare_logger, cosine_scheduler
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
global logger
torch.multiprocessing.set_start_method('spawn')
setup_seed(2333)
args = option.parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
logger = Prepare_logger(eval=False)
logger.info(args)
train_loader = DataLoader(Dataset(args, test_mode=False),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_loader = DataLoader(Dataset(args, test_mode=True),
batch_size=5, shuffle=False,
num_workers=args.workers, pin_memory=True)
model_av = AVCE_Model(args).cuda()
model_v = Single_Model(args).cuda()
total_params = sum(p.numel() for p in model_av.parameters())
total_params += sum(p.numel() for p in model_v.parameters())
logger.info(f'{total_params/1e6:.3f}M parameters.')
total_trainable_params = sum(p.numel() for p in model_av.parameters() if p.requires_grad is True)
total_trainable_params += sum(p.numel() for p in model_v.parameters() if p.requires_grad is True)
logger.info(f'{total_trainable_params/1e6:.3f}M training parameters.')
if not os.path.exists('./ckpt'):
os.makedirs('./ckpt')
criterion = torch.nn.BCELoss()
optimizer_av = optim.Adam(model_av.parameters(), lr=args.lr, weight_decay=0.000)
optimizer_v = optim.Adam(model_v.parameters(), lr=args.lr / 5, weight_decay=0.000)
scheduler_av = optim.lr_scheduler.CosineAnnealingLR(optimizer_av, T_max=60, eta_min=0)
scheduler_v = optim.lr_scheduler.CosineAnnealingLR(optimizer_v, T_max=60, eta_min=0)
gt = np.load(args.gt)
best_av_auc = 0
best_v_auc = 0
best_epoch = 0
av_auc, v_auc = test(test_loader, model_av, model_v, gt, 0)
logger.info('Random initalization: offline av_auc:{0:.4}\n'.format(av_auc))
for epoch in range(args.max_epoch):
st = time.time()
lamda_a2b = min(args.lamda_a2b, args.lamda_cof * epoch)
lamda_a2n = min(args.lamda_a2n, args.lamda_cof * epoch)
av_loss, v_loss = train(train_loader, model_av, model_v, optimizer_av, optimizer_v, criterion,
lamda_a2b, lamda_a2n, logger)
scheduler_av.step()
scheduler_v.step()
with torch.no_grad():
m = cosine_scheduler(base_value=args.m, final_value=1, curr_epoch=epoch, epochs=50)
if m != 1.0:
for param_av in model_av.named_parameters():
if 'sa_a' in param_av[0] or 'fc_a' in param_av[0]:
continue
for param_v in model_v.named_parameters():
if param_av[0] == param_v[0]:
param_av[1].data.mul_(m).add_((1 - m) * param_v[1].detach().data)
break
elif param_av[0] == 'att_mmil.fc.weight' and param_v[0] == 'fc.weight':
param_av[1].data.mul_(m).add_((1 - m) * param_v[1].detach().data)
break
elif param_av[0] == 'att_mmil.fc.bias' and param_v[0] == 'fc.bias':
param_av[1].data.mul_(m).add_((1 - m) * param_v[1].detach().data)
break
av_auc, v_auc = test(test_loader, model_av, model_v, gt, epoch)
if av_auc > best_av_auc:
best_av_auc = av_auc
best_v_auc = v_auc
best_epoch = epoch
torch.save(model_av.state_dict(), './ckpt/' + args.model_name + '.pkl')
logger.info('av_loss:{:.4} | v_loss:{:.4}\n'.format(av_loss, v_loss))
logger.info(
'Epoch {}/{}: av_auc:{:.4} | v_auc:{:.4} | m={:.4}\n'.format(epoch, args.max_epoch, av_auc, v_auc, m))
logger.info(
'Best Performance in Epoch {}: av_auc:{:.4} | v_auc:{:.4}\n'.format(best_epoch, best_av_auc, best_v_auc))