-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecon.py
80 lines (73 loc) · 3.29 KB
/
recon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
'''---------------------------------------------------------------------------
IFCNN: A General Image Fusion Framework Based on Convolutional Neural Network
----------------------------------------------------------------------------'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
# from context_block import ContextBlock
from gcn import BasicUnit
def L1_norm(narry_a, narry_b):
temp_abs_a = torch.abs(narry_a)
temp_abs_b = torch.abs(narry_b)
l1_a = torch.sum(temp_abs_a, dim=1)
l1_b = torch.sum(temp_abs_b, dim=1)
mask_value = l1_a + l1_b
array_MASK_a = torch.unsqueeze(l1_a / mask_value,1)
array_MASK_b = torch.unsqueeze(l1_b / mask_value,1)
resule_tf = array_MASK_a * narry_a + array_MASK_b * narry_b
return resule_tf
# My Convolution Block
class ConvBlock(nn.Module):
def __init__(self, inplane, outplane):
super(ConvBlock, self).__init__()
self.padding = (1, 1, 1, 1)
self.conv = nn.Conv2d(inplane, outplane, kernel_size=3, padding=0, stride=1, bias=False)
# self.bn = nn.BatchNorm2d(outplane)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
out = F.pad(x, self.padding, 'replicate')
out = self.conv(out)
# out = self.bn(out)
out = self.relu(out)
return out
class GCNRecon(nn.Module):
def __init__(self):
super(GCNRecon, self).__init__()
self.BasicUnit_ir_en1 = BasicUnit(64)
self.BasicUnit_ir_en2 = BasicUnit(64)
self.BasicUnit_ir_en3 = BasicUnit(64)
self.BasicUnit_vis_en1 = BasicUnit(64)
self.BasicUnit_vis_en2 = BasicUnit(64)
self.BasicUnit_vis_en3 = BasicUnit(64)
self.BasicUnit_de1 = BasicUnit(64)
self.BasicUnit_de2 = BasicUnit(64)
self.BasicUnit_de3 = BasicUnit(64)
# self.fuse_scheme = fuse_scheme # MAX, MEAN, SUM
self.ir_conv1 = ConvBlock(128, 64)
self.vis_conv1 = ConvBlock(128, 64)
self.ir_conv2 = ConvBlock(64, 64)
self.vis_conv2 = ConvBlock(64, 64)
self.de_conv1 = ConvBlock(64, 64)
self.de_conv2 = ConvBlock(64, 3)
def forward(self, ir,vis):
########## IR ######################################
ir_feature = self.ir_conv1(ir)
ir_feature = self.ir_conv2(ir_feature)
ir_feature = self.BasicUnit_ir_en1(ir_feature)
ir_feature = self.BasicUnit_ir_en2(ir_feature)
ir_feature = self.BasicUnit_ir_en3(ir_feature)
########## VIS ######################################
vis_feature = self.vis_conv1(vis)
vis_feature = self.vis_conv2(vis_feature)
vis_feature = self.BasicUnit_vis_en1(vis_feature)
vis_feature = self.BasicUnit_vis_en2(vis_feature)
vis_feature = self.BasicUnit_ir_en3(vis_feature)
########## Decoder ###################################
fus_feature = L1_norm(ir_feature, vis_feature)
fus_feature = self.BasicUnit_de1(fus_feature)# 64 -> 64
fus_feature = self.BasicUnit_de2(fus_feature)# 64 -> 64
fus_feature = self.BasicUnit_de3(fus_feature)# 64 -> 64
fus_feature = self.de_conv1(fus_feature)# 64 -> 3
out = self.de_conv2(fus_feature)# 64 -> 3
return out