-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
160 lines (144 loc) · 6.52 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import logging
import argparse
from typing import Union, Dict
from argparse import Namespace
import pytorch_lightning as pl
from transformers import AdamW, OpenAIGPTLMHeadModel
from transformers.optimization import WarmupLinearSchedule, WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule
from decoder import ChatBot
from evaluate import eval_output
logger = logging.getLogger(__name__)
class GPT2Transformer(pl.LightningModule):
def __init__(self, dataset_module, tokenizer, hparams: Union[Dict, argparse.Namespace]):
self.dataset_module = dataset_module
self.tokenizer = tokenizer
if type(hparams) == dict:
hparams = Namespace(**hparams)
super().__init__()
self.save_hyperparameters(hparams)
self.model = OpenAIGPTLMHeadModel.from_pretrained(
self.hparams.model_name_or_path)
self.chat_bot = ChatBot(tokenizer=self.tokenizer, start_id=None, end_id=self.tokenizer.sep_token_id, maxlen=50)
def forward(self, **inputs):
outputs = self.model(**inputs)
return outputs[0]
def training_step(self, batch, batch_ids):
inputs = {"input_ids":batch[0], "token_type_ids": batch[1], "attention_mask": batch[2], "labels": batch[3]}
loss = self(**inputs)
self.logger.experiment.add_scalar("Loss/train", loss, self.global_step)
# lr_scheduler = self.trainer.lr_schedulers[0]["scheduler"]
# tensorboard_logs = {"loss":loss, "rate": lr_scheduler.get_last_lr()[-1]}
# return {"loss": loss, "log": tensorboard_logs}
return loss
def validation_step(self, batch, batch_ids):
outputs = batch[-1]
decode_rst = self.chat_bot.response(self, batch[:-1])
ave, f1, bleuave = eval_output(decode_rst, outputs)
return {"f1":f1, "bleuave": bleuave, "ave": ave}
def _eval_end(self, outputs):
f1_mean = sum([x["f1"] for x in outputs]) / len(outputs)
bleuave_mean = sum([x["bleuave"] for x in outputs]) / len(outputs)
ave_mean = sum([x["ave"] for x in outputs]) / len(outputs)
results = {"f1": f1_mean, "bleuave": bleuave_mean, "ave_score": ave_mean}
return results
def validation_epoch_end(self, outputs: list):
logs = self._eval_end(outputs)
self.log("ave_score", logs["ave_score"], prog_bar=True, logger=True)
self.log("f1", logs["f1"], prog_bar=True, logger=True)
self.log("bleuave", logs["bleuave"], prog_bar=True, logger=True)
def configure_optimizers(self):
"""Prepare optimizer and schedule (linear warmup and decay)"""
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.hparams.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon
)
self.opt = optimizer
scheduler = self.get_lr_scheduler()
return [optimizer], [scheduler]
def get_lr_scheduler(self):
scheduler = WarmupLinearSchedule(
self.opt, warmup_steps=self.hparams.warmup_steps, t_total=self.total_steps()
)
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return scheduler
def total_steps(self) -> int:
num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores
effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_module.train_data_size / effective_batch_size) * self.hparams.max_epochs
@staticmethod
def add_model_specific_args(parser):
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model"
)
parser.add_argument(
"--config_name", default="", type=str, help="pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help="pretrained tokenizer name or path if not the same as model_name"
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="where do you want to store the pre-trained models downloaded from huggingface.co"
)
parser.add_argument(
"--encoder_layerdrop",
type=float,
help="Encoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--decoder_layerdrop",
type=float,
help="Decoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--dropout",
type=float,
help="Dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--attention_dropout",
type=float,
help="Attention dropout probability (Optional). Goes into model.config",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--lr_scheduler",
default="linear",
type=str,
help="Learning rate scheduler",
)
parser.add_argument(
"--gradient_accumulation_steps",
dest="accumulate_grad_batches",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass"
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader")
parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int)
parser.add_argument("--adafactor", action="store_true")
return parser