-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathcompress.py
265 lines (226 loc) · 8.24 KB
/
compress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# %%
import gc
import json
import os
import time
import uuid
from argparse import ArgumentParser, Namespace
from os import path
from shutil import copyfile
from typing import Dict, Tuple
import torch
from tqdm import tqdm
# %%
from arguments import (
CompressionParams,
ModelParams,
OptimizationParams,
PipelineParams,
get_combined_args,
)
from compression.vq import CompressionSettings, compress_gaussians
from gaussian_renderer import GaussianModel, render
from lpipsPyTorch import lpips
from scene import Scene
from finetune import finetune
from utils.image_utils import psnr
from utils.loss_utils import ssim
def unique_output_folder():
if os.getenv("OAR_JOB_ID"):
unique_str = os.getenv("OAR_JOB_ID")
else:
unique_str = str(uuid.uuid4())
return os.path.join("./output_vq/", unique_str[0:10])
def calc_importance(
gaussians: GaussianModel, scene, pipeline_params
) -> Tuple[torch.Tensor, torch.Tensor]:
scaling = gaussians.scaling_qa(
gaussians.scaling_activation(gaussians._scaling.detach())
)
cov3d = gaussians.covariance_activation(
scaling, 1.0, gaussians.get_rotation.detach(), True
).requires_grad_(True)
scaling_factor = gaussians.scaling_factor_activation(
gaussians.scaling_factor_qa(gaussians._scaling_factor.detach())
)
h1 = gaussians._features_dc.register_hook(lambda grad: grad.abs())
h2 = gaussians._features_rest.register_hook(lambda grad: grad.abs())
h3 = cov3d.register_hook(lambda grad: grad.abs())
background = torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32, device="cuda")
gaussians._features_dc.grad = None
gaussians._features_rest.grad = None
num_pixels = 0
for camera in tqdm(scene.getTrainCameras(), desc="Calculating sensitivity"):
cov3d_scaled = cov3d * scaling_factor.square()
rendering = render(
camera,
gaussians,
pipeline_params,
background,
clamp_color=False,
cov3d=cov3d_scaled,
)["render"]
loss = rendering.sum()
loss.backward()
num_pixels += rendering.shape[1]*rendering.shape[2]
importance = torch.cat(
[gaussians._features_dc.grad, gaussians._features_rest.grad],
1,
).flatten(-2)/num_pixels
cov_grad = cov3d.grad/num_pixels
h1.remove()
h2.remove()
h3.remove()
torch.cuda.empty_cache()
return importance.detach(), cov_grad.detach()
def render_and_eval(
gaussians: GaussianModel,
scene: Scene,
model_params: ModelParams,
pipeline_params: PipelineParams,
) -> Dict[str, float]:
with torch.no_grad():
ssims = []
psnrs = []
lpipss = []
views = scene.getTestCameras()
bg_color = [1, 1, 1] if model_params.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
for view in tqdm(views, desc="Rendering progress"):
rendering = render(view, gaussians, pipeline_params, background)[
"render"
].unsqueeze(0)
gt = view.original_image[0:3, :, :].unsqueeze(0)
ssims.append(ssim(rendering, gt))
psnrs.append(psnr(rendering, gt))
lpipss.append(lpips(rendering, gt, net_type="vgg"))
gc.collect()
torch.cuda.empty_cache()
return {
"SSIM": torch.tensor(ssims).mean().item(),
"PSNR": torch.tensor(psnrs).mean().item(),
"LPIPS": torch.tensor(lpipss).mean().item(),
}
def run_vq(
model_params: ModelParams,
optim_params: OptimizationParams,
pipeline_params: PipelineParams,
comp_params: CompressionParams,
):
gaussians = GaussianModel(
model_params.sh_degree, quantization=not optim_params.not_quantization_aware
)
scene = Scene(
model_params, gaussians, load_iteration=comp_params.load_iteration, shuffle=True
)
if comp_params.start_checkpoint:
(checkpoint_params, first_iter) = torch.load(comp_params.start_checkpoint)
gaussians.restore(checkpoint_params, optim_params)
timings ={}
# %%
start_time = time.time()
color_importance, gaussian_sensitivity = calc_importance(
gaussians, scene, pipeline_params
)
end_time = time.time()
timings["sensitivity_calculation"] = end_time-start_time
# %%
print("vq compression..")
with torch.no_grad():
start_time = time.time()
color_importance_n = color_importance.amax(-1)
gaussian_importance_n = gaussian_sensitivity.amax(-1)
torch.cuda.empty_cache()
color_compression_settings = CompressionSettings(
codebook_size=comp_params.color_codebook_size,
importance_prune=comp_params.color_importance_prune,
importance_include=comp_params.color_importance_include,
steps=int(comp_params.color_cluster_iterations),
decay=comp_params.color_decay,
batch_size=comp_params.color_batch_size,
)
gaussian_compression_settings = CompressionSettings(
codebook_size=comp_params.gaussian_codebook_size,
importance_prune=None,
importance_include=comp_params.gaussian_importance_include,
steps=int(comp_params.gaussian_cluster_iterations),
decay=comp_params.gaussian_decay,
batch_size=comp_params.gaussian_batch_size,
)
compress_gaussians(
gaussians,
color_importance_n,
gaussian_importance_n,
color_compression_settings if not comp_params.not_compress_color else None,
gaussian_compression_settings
if not comp_params.not_compress_gaussians
else None,
comp_params.color_compress_non_dir,
prune_threshold=comp_params.prune_threshold,
)
end_time = time.time()
timings["clustering"]=end_time-start_time
gc.collect()
torch.cuda.empty_cache()
os.makedirs(comp_params.output_vq, exist_ok=True)
copyfile(
path.join(model_params.model_path, "cfg_args"),
path.join(comp_params.output_vq, "cfg_args"),
)
model_params.model_path = comp_params.output_vq
with open(
os.path.join(comp_params.output_vq, "cfg_args_comp"), "w"
) as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(comp_params))))
iteration = scene.loaded_iter + comp_params.finetune_iterations
if comp_params.finetune_iterations > 0:
start_time = time.time()
finetune(
scene,
model_params,
optim_params,
comp_params,
pipeline_params,
testing_iterations=[
-1
],
debug_from=-1,
)
end_time = time.time()
timings["finetune"]=end_time-start_time
# %%
out_file = path.join(
comp_params.output_vq,
f"point_cloud/iteration_{iteration}/point_cloud.npz",
)
start_time = time.time()
gaussians.save_npz(out_file, sort_morton=not comp_params.not_sort_morton)
end_time = time.time()
timings["encode"]=end_time-start_time
timings["total"]=sum(timings.values())
with open(f"{comp_params.output_vq}/times.json","w") as f:
json.dump(timings,f)
file_size = os.path.getsize(out_file) / 1024**2
print(f"saved vq finetuned model to {out_file}")
# eval model
print("evaluating...")
metrics = render_and_eval(gaussians, scene, model_params, pipeline_params)
metrics["size"] = file_size
print(metrics)
with open(f"{comp_params.output_vq}/results.json","w") as f:
json.dump({f"ours_{iteration}":metrics},f,indent=4)
if __name__ == "__main__":
parser = ArgumentParser(description="Compression script parameters")
model = ModelParams(parser, sentinel=True)
model.data_device = "cuda"
pipeline = PipelineParams(parser)
op = OptimizationParams(parser)
comp = CompressionParams(parser)
args = get_combined_args(parser)
if args.output_vq is None:
args.output_vq = unique_output_folder()
model_params = model.extract(args)
optim_params = op.extract(args)
pipeline_params = pipeline.extract(args)
comp_params = comp.extract(args)
run_vq(model_params, optim_params, pipeline_params, comp_params)