-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
33 lines (26 loc) · 2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from trainer import run
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train a denoising diffusion model.")
# Các tham số model và train
parser.add_argument('--data_path', type=str, required=True, help='Path to the image dataset.')
parser.add_argument('--image_size', type=int, default=128, help='Size of the images.')
parser.add_argument('--batch_size', type=int, default=32, help='Training batch size.')
parser.add_argument('--learning_rate', type=float, default=8e-5, help='Learning rate.')
parser.add_argument('--num_steps', type=int, default=700000, help='Number of training steps.')
parser.add_argument('--gradient_accumulation', type=int, default=2, help='Number of gradient accumulation steps.')
parser.add_argument('--ema_decay', type=float, default=0.995, help='EMA decay rate.')
parser.add_argument('--mixed_precision', action='store_true', help='Use mixed precision training.')
parser.add_argument('--calculate_fid', action='store_true', help='Calculate FID during training.')
parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save models.')
parser.add_argument('--checkpoint_interval', type=int, default=10000, help='Interval steps for saving checkpoints.')
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training.')
# Tham số Gaussian Diffusion
parser.add_argument('--timesteps', type=int, default=1000, help='Number of diffusion steps.')
parser.add_argument('--sampling_timesteps', type=int, default=250, help='Number of sampling timesteps.')
# Tham số mô hình Unet
parser.add_argument('--model_dim', type=int, default=64, help='Dimension of the model.')
parser.add_argument('--model_dim_mults', type=int, nargs='+', default=[1, 2, 4, 8], help='Dimension multipliers for the model.')
parser.add_argument('--flash_attn', action='store_true', help='Use flash attention.')
args = parser.parse_args()
run(args)