-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
499 lines (439 loc) · 20.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# -*- coding: utf-8 -*-
"""SANet training routines."""
# Standard lib imports
import os
import time
import argparse
import os.path as osp
from urllib.parse import urlparse
# PyTorch imports
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
# Local imports
from networks.sanet import SANet
from referit_loader import ReferDataset
from utils.pyt_utils import load_model
from engine import Engine
# Other imports
import numpy as np
from tqdm import tqdm
import cv2
parser = argparse.ArgumentParser(
description='Structured Attention Network for Referring Image Segmentation')
# Dataloading-related settings
parser.add_argument('--data', type=str, default='datasets/refer',
help='path to ReferIt splits data folder')
parser.add_argument('--split-root', type=str, default='data',
help='path to dataloader splits data folder')
parser.add_argument('--save-folder', default='models/',
help='location to save checkpoint models')
parser.add_argument('--snapshot', default='models/deeplab_resnet.pth.tar',
help='path to weight snapshot file')
parser.add_argument('--dataset', default='unc', type=str,
help='dataset used to train network')
parser.add_argument('--split', default='train', type=str,
help='name of the dataset split used to train')
parser.add_argument('--val', default='val', type=str,
help='name of the dataset split used to validate')
parser.add_argument('--eval-first', default=False, action='store_true',
help='evaluate model weights before training')
parser.add_argument('-j', '--num_workers', default=1, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Training procedure settings
parser.add_argument('--no-cuda', default=False, action='store_true',
help='Do not use cuda to train model')
parser.add_argument('--backup-epochs', type=int, default=1,
help='iteration epoch to perform state backups')
parser.add_argument('--batch-size', default=16, type=int,
help='Batch size for each gpu')
parser.add_argument('--epochs', type=int, default=15,
help='upper epoch limit')
parser.add_argument('--lr', '--learning-rate', default=2.5e-5, type=float,
help='initial learning rate')
parser.add_argument('--patience', default=0, type=int,
help='patience epochs for LR decreasing')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--sync-bn', action='store_true', default=False,
help='Use sync batchnorm. Default False')
parser.add_argument('--start-epoch', type=int, default=0,
help='epoch number to resume')
parser.add_argument('--optim-snapshot', type=str,
default='models/sanet_optim.pth',
help='path to optimizer state snapshot')
parser.add_argument('--pin-memory', default=False, action='store_true',
help='enable CUDA memory pin on DataLoader')
# Model settings
parser.add_argument('--size', default=320, type=int,
help='image size')
parser.add_argument('--os', default=16, type=int,
help='output stride. Default 16')
parser.add_argument('--time', default=20, type=int,
help='maximum time steps per batch')
parser.add_argument('--emb-size', default=300, type=int,
help='word embedding dimensions')
parser.add_argument('--hid-size', default=256, type=int,
help='language model hidden size')
parser.add_argument('--vis-size', default=256, type=int,
help='visual feature dimensions')
parser.add_argument('--mix-size', default=256, type=int,
help='multimodal feature dimensions')
parser.add_argument('--tree-hid-size', default=256, type=int,
help='tree-gru hidden state dimensions')
parser.add_argument('--lang-layers', default=1, type=int,
help='number of language model (Bi-LSTM) stacked layers')
parser.add_argument('--pretrained-embedding', default='glove', type=str,
help='use pretrained embedding models (Glove)')
parser.add_argument('--backbone', default='resnet101', type=str,
help='(resnet101, dpn92)')
# Other settings
parser.add_argument('--tensorboard', action='store_true', default=False,
help='Using tensorboard for visualization. Default False')
parser.add_argument('--visual-interval', default=100, type=int,
help='Using tensorboard for visualization. Default False')
engine = Engine(custom_parser=parser)
args = parser.parse_args()
verbose = 0
if (not engine.distributed) or (engine.distributed and engine.local_rank ==0):
verbose = 1
# print argument settings
args_dict = vars(args)
if verbose == 1:
print('Argument list to program')
print('\n'.join(['--{0} {1}'.format(arg, args_dict[arg])
for arg in args_dict]))
print('\n\n')
if args.tensorboard:
from tensorboardX import SummaryWriter
# Writer will output to ./runs/ directory by default
writer = SummaryWriter()
args.cuda = not args.no_cuda and torch.cuda.is_available()
seed = args.seed
if engine.distributed:
seed = engine.local_rank
torch.manual_seed(seed)
if args.cuda:
torch.backends.cudnn.benchmark = True
torch.cuda.manual_seed(args.seed)
image_size = (args.size, args.size)
input_transform = Compose([
Resize(image_size),
ToTensor(),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
target_transform = Compose([
Resize(image_size),
ToTensor()
])
refer = ReferDataset(data_root=args.data,
dataset=args.dataset,
split_root=args.split_root,
split=args.split,
transform=input_transform,
annotation_transform=target_transform,
max_query_len=args.time)
train_loader, train_sampler = engine.get_train_loader(refer)
start_epoch = args.start_epoch
if args.val is not None:
refer_val = ReferDataset(data_root=args.data,
dataset=args.dataset,
split_root=args.split_root,
split=args.val,
transform=input_transform,
annotation_transform=target_transform,
max_query_len=args.time)
val_loader, val_sampler = engine.get_test_loader(refer_val)
if not osp.exists(args.save_folder) and verbose == 1:
os.makedirs(args.save_folder)
net = SANet(dict_size=len(refer.corpus),
emb_size=args.emb_size,
hid_size=args.hid_size,
vis_size=args.vis_size,
mix_size=args.mix_size,
tree_hid_size = args.tree_hid_size,
lang_layers=args.lang_layers,
output_stride=args.os,
num_classes=1,
pretrained_backbone=not osp.exists(args.snapshot),
pretrained_embedding=args.pretrained_embedding,
dataset=args.dataset,
backbone=args.backbone)
if osp.exists(args.snapshot):
print('Loading state dict from: {0}'.format(args.snapshot))
if args.start_epoch == 0:
net = load_model(model=net, model_file=args.snapshot, is_restore=False)
else:
net = load_model(model=net, model_file=args.snapshot, is_restore=True)
elif args.snapshot:
raise ValueError('Pretrained model not found at {0}'.format(args.snapshot))
cuda = torch.cuda.is_available() if args.cuda else False
if cuda:
net.cuda()
if verbose == 1:
if cuda:
current_device = torch.cuda.current_device()
print("Running on", torch.cuda.get_device_name(current_device))
else:
print("Running on CPU")
base_params = list(map(id, net.backbone.parameters()))
#emb_params = list(map(id, net.emb.parameters()))
new_params = filter(lambda p: id(p) not in base_params, net.parameters())
train_params = [{'params': net.backbone.parameters(), 'lr': args.lr},
# {'params': net.emb.parameters(), 'lr': args.lr},
{'params': new_params, 'lr': args.lr * 10}]
optimizer = optim.Adam(train_params, lr=args.lr)
#scheduler = ReduceLROnPlateau(optimizer, patience=args.patience, factor=0.2)
if osp.exists(args.optim_snapshot) and verbose == 1:
optimizer.load_state_dict(torch.load(args.optim_snapshot))
if args.dataset == 'gref':
pos_weight=torch.tensor(4.)
else:
pos_weight=None
net = engine.data_parallel(net)
def iou_loss(pred, mask):
pred = torch.sigmoid(pred)
inter = (pred*mask).sum(dim=(2,3))
union = (pred+mask).sum(dim=(2,3))
iou = 1-(inter+1)/(union-inter+1)
return iou.mean()
def train(epoch):
net.train()
# set epoch to sampler for shuffling.
if engine.distributed:
train_sampler.set_epoch(epoch)
train_loss = Metric(name='train_loss', engine=engine)
epoch_avg_loss = torch.tensor(0.)
optimizer.param_groups[0]['lr'] = (1-abs((epoch+1)/(args.epochs+1)*2-1))*args.lr
optimizer.param_groups[1]['lr'] = (1-abs((epoch+1)/(args.epochs+1)*2-1))*args.lr*10
with tqdm(total=len(train_loader),
dynamic_ncols=True,
desc='Train Epoch #{}'.format(epoch),
disable=not verbose) as t:
for batch_idx, (imgs, masks, words, adjs, words_len) in enumerate(train_loader):
if cuda:
imgs = imgs.cuda()
masks = masks.cuda()
words = words.cuda()
words_len = words_len.cuda()
adjs = adjs.cuda()
optimizer.zero_grad()
out_masks, out_masks_aux, out_att = net(imgs, words, adjs, words_len)
#loss = criterion(out_masks, masks)
loss1 = F.binary_cross_entropy_with_logits(out_masks, masks, pos_weight) + iou_loss(out_masks, masks)
loss2 = F.binary_cross_entropy_with_logits(out_masks_aux, masks, pos_weight) + iou_loss(out_masks_aux, masks)
loss = (loss1 + loss2) / 2
loss.backward()
optimizer.step()
# update metric
train_loss.update(loss, imgs.size(0))
batch_loss = train_loss.avg.item()
epoch_avg_loss += batch_loss
# Tensorboard
if verbose == 1 and args.tensorboard and batch_idx % args.visual_interval == 0:
img_grid, gt_grid, out_grid, att_grid, phrase = visualize_data(imgs, masks, words, words_len, torch.sigmoid(out_masks), out_att)
n_iter = epoch*len(train_loader) + batch_idx
writer.add_scalar('train/train_loss', batch_loss, n_iter)
writer.add_image('train/images', img_grid, n_iter)
writer.add_image('train/gts', gt_grid, n_iter)
writer.add_image('train/output', out_grid, n_iter)
writer.add_image('train/att', att_grid, n_iter)
writer.add_text('train/phrase', phrase, n_iter)
t.set_postfix({'loss': batch_loss,
'base_lr': '{:.2e}'.format(optimizer.param_groups[0]['lr'])})
t.update(1)
train_loss.reset()
epoch_avg_loss /= len(train_loader)
if verbose == 1 and args.tensorboard:
writer.add_scalar('train/epoch_avg_loss', epoch_avg_loss, epoch)
epoch_avg_loss = float(epoch_avg_loss.numpy())
return epoch_avg_loss
def compute_mask_IU(masks, target):
assert(target.shape[-2:] == masks.shape[-2:])
temp = (masks * target)
intersection = temp.sum()
union = ((masks + target) - temp).sum()
return intersection, union
def visualize_data(imgs, masks, words, words_len, out, att):
visual_imgs = imgs.detach().cpu()
visual_gt = masks.detach().cpu()
visual_out = out.detach().cpu()
visual_att = att.detach().cpu()
img_grid = torchvision.utils.make_grid(visual_imgs, nrow=4, normalize=True, pad_value=1)
gt_grid = torchvision.utils.make_grid(visual_gt, nrow=4, normalize=True, pad_value=1)
out_grid = torchvision.utils.make_grid(visual_out, nrow=4, normalize=True, pad_value=1)
att_grid = torchvision.utils.make_grid(visual_att, nrow=4, normalize=True, pad_value=1)
phrase = ""
for i in range(words.size(0)):
words_idx = words[i].detach().cpu().tolist()
words_list = refer.corpus.dictionary.__getitem__(words_idx)
phrase += "({})".format(str(i)) + " ".join(words_list[j] for j in range(words_len[i])) + '; '
return img_grid, gt_grid, out_grid, att_grid, phrase
def evaluate(epoch=0):
net.eval()
score_thresh = np.concatenate([np.arange(start=0.00, stop=0.96,
step=0.025)]).tolist()
cum_I = torch.zeros(len(score_thresh)).cuda()
cum_U = torch.zeros(len(score_thresh)).cuda()
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = torch.zeros(len(eval_seg_iou_list), len(score_thresh)).cuda()
seg_total = 0
with tqdm(total=len(val_loader),
dynamic_ncols=True,
desc='Validation Epoch #{}'.format(epoch),
disable=not verbose) as t:
for batch_idx, (imgs, masks, words, adjs, words_len) in enumerate(val_loader):
if cuda:
imgs = imgs.cuda()
words = words.cuda()
masks = masks.cuda()
adjs = adjs.cuda()
words_len = words_len.cuda()
with torch.no_grad():
out, _, out_att = net(imgs, words, adjs, words_len)
out = torch.sigmoid(out)
b_cum_I = torch.zeros(len(score_thresh)).cuda()
b_cum_U = torch.zeros(len(score_thresh)).cuda()
b_seg_correct = torch.zeros(len(eval_seg_iou_list), len(score_thresh)).cuda()
for i in range(imgs.size(0)):
inter = torch.zeros(len(score_thresh)).cuda()
union = torch.zeros(len(score_thresh)).cuda()
for idx, thresh in enumerate(score_thresh):
thresholded_out = (out[i] > thresh).float()
try:
inter[idx], union[idx] = compute_mask_IU(thresholded_out, masks[i])
except AssertionError:
inter[idx] = 0
union[idx] = masks[i].sum()
this_iou = inter / union
for idx, seg_iou in enumerate(eval_seg_iou_list):
for jdx in range(len(score_thresh)):
b_seg_correct[idx, jdx] += (this_iou[jdx] >= seg_iou)
seg_total += 1
b_cum_I += inter
b_cum_U += union
if verbose == 1 and args.tensorboard and epoch >= 5 and this_iou.max() < 0.1:
failed_idx = [i]
img_grid, gt_grid, out_grid, att_grid, phrase = visualize_data(imgs[failed_idx], \
masks[failed_idx], words[failed_idx], words_len[failed_idx], out[failed_idx], out_att[failed_idx])
n_iter = epoch*len(val_loader) + batch_idx + i
writer.add_image('val_failed/images', img_grid, n_iter)
writer.add_image('val_failed/gts', gt_grid, n_iter)
writer.add_image('val_failed/output', out_grid, n_iter)
writer.add_image('val_failed/att', att_grid, n_iter)
writer.add_text('val_failed/phrase', phrase, n_iter)
if engine.distributed:
seg_correct += engine.all_reduce_tensor(b_seg_correct.float().detach())
cum_I += engine.all_reduce_tensor(b_cum_I.float().detach())
cum_U += engine.all_reduce_tensor(b_cum_U.float().detach())
else:
seg_correct += b_seg_correct.float().detach()
cum_I += b_cum_I.float().detach()
cum_U += b_cum_U.float().detach()
# Tensorboard
if verbose == 1 and args.tensorboard and batch_idx % args.visual_interval == 0:
img_grid, gt_grid, out_grid, att_grid, phrase = visualize_data(imgs, masks, words, words_len, out, out_att)
n_iter = epoch*len(val_loader) + batch_idx
writer.add_image('val/images', img_grid, n_iter)
writer.add_image('val/gts', gt_grid, n_iter)
writer.add_image('val/output', out_grid, n_iter)
writer.add_image('val/att', att_grid, n_iter)
writer.add_text('val/phrase', phrase, n_iter)
t.set_postfix({'IoU@{:.2f}'.format(score_thresh[20]): '{:.3f}'.format(float(this_iou[20]))})
t.update(1)
# Print final accumulated IoUs
final_ious = cum_I / cum_U
max_iou, max_idx = torch.max(final_ious, 0)
max_iou = float(max_iou.detach().cpu().numpy())
max_idx = int(max_idx.detach().cpu().numpy())
# Evaluation finished. Compute total IoUs and threshold that maximizes
if verbose == 1:
# for jdx, thresh in enumerate(score_thresh):
print('-' * 26)
print('prec@X for Threshold {:.3f}'.format(score_thresh[max_idx]))
for idx, seg_iou in enumerate(eval_seg_iou_list):
print('prec@{:s} = {:2.2%}'.format(
str(seg_iou), seg_correct[idx, max_idx] / seg_total))
print('-' * 26 + '\n' + '')
print('FINAL accumulated IoUs at different thresholds:')
print('{:4}| {:3} |'.format('Thresholds', 'mIoU'))
print('-' * 26)
for idx, thresh in enumerate(score_thresh):
print('{:.3f}| {:<2.2%} |'.format(thresh, final_ious[idx]))
print('-' * 26)
# Print maximum IoU
print('Maximum IoU: {:2.2%} - Threshold: {:.3f}'.format(
max_iou, score_thresh[max_idx]))
if args.tensorboard:
writer.add_scalar('val/max_iou', max_iou, epoch)
writer.add_scalar('val/max_iou_threshold', score_thresh[max_idx], epoch)
return max_iou
# average metrics from distributed training.
class Metric(object):
def __init__(self, name, engine):
self.name = name
self.sum = torch.tensor(0.)
self.n = torch.tensor(0.)
self.engine = engine
def update(self, value, n=1):
value = value.detach()
if self.engine.distributed:
value = engine.all_reduce_tensor(value)
self.sum += value
self.n += n
def reset(self):
self.sum = torch.tensor(0.)
self.n = torch.tensor(0.)
@property
def avg(self):
return self.sum / self.n
if __name__ == '__main__':
print('Train begins...')
best_val_loss = None
if args.eval_first:
evaluate(0)
try:
for epoch in range(start_epoch, args.epochs):
epoch_start_time = time.time()
train_loss = train(epoch)
val_loss = train_loss
if args.val is not None:
val_loss = 1 - evaluate(epoch) #iou
#scheduler.step(val_loss)
if verbose == 1:
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s '
'| epoch loss {:.6f} |'.format(
epoch, time.time() - epoch_start_time, train_loss))
print('-' * 89)
if best_val_loss is None or val_loss < best_val_loss:
best_val_loss = val_loss
filename = osp.join(args.save_folder, 'sanet_best_model_{}.pth'.format(args.dataset))
torch.save(net.module.state_dict(), filename)
if epoch % args.backup_epochs == 0:
filename = 'sanet_{0}_{1}_snapshot_epoch-{2}.pth'.format(
args.dataset, args.split, epoch)
filename = osp.join(args.save_folder, filename)
state_dict = net.module.state_dict()
torch.save(state_dict, filename)
optim_filename = 'sanet_{0}_{1}_optim_epoch-{2}.pth'.format(
args.dataset, args.split, epoch)
optim_filename = osp.join(args.save_folder, optim_filename)
state_dict = optimizer.state_dict()
torch.save(state_dict, optim_filename)
if args.tensorboard and verbose == 1:
writer.close()
torch.cuda.empty_cache()
except KeyboardInterrupt:
if args.tensorboard and verbose == 1:
writer.close()
torch.cuda.empty_cache()
print('-' * 89)
print('Exiting from training early')