generated from victoresque/pytorch-template
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathval.py
161 lines (136 loc) · 5.15 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import shutil
from pathlib import Path
import cupy
import torch
import torch.nn.functional as F
import torchvision as tv
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataloader.viton_dataset import LoadVITONDataset
from models.generators.mobile_unet import MobileNetV2_unet
from models.warp_modules.mobile_afwm import MobileAFWM as AFWM
from opt.test_opt import TestOptions
from utils.general import print_log
from utils.metrics import calculate_fid_given_paths
from utils.torch_utils import get_ckpt, load_ckpt, select_device
def run_val_pf(
data_loader, models, align_corners, device, img_dir, save_dir, log_path, save_img=True
):
warp_model, gen_model = models['warp'], models['gen']
metrics = {}
tryon_dir = Path(save_dir) / 'results' / 'tryon'
visualize_dir = Path(save_dir) / 'results' / 'visualize'
tryon_dir.mkdir(parents=True, exist_ok=True)
visualize_dir.mkdir(parents=True, exist_ok=True)
# testidate
with torch.no_grad():
# seen, dt = 0, (Profile(device=device), Profile(device=device), Profile(device=device))
for idx, data in enumerate(tqdm(data_loader)):
# Prepare data
# with dt[0]:
real_image = data['image'].to(device)
clothes = data['color'].to(device)
edge = data['edge'].to(device)
edge = (edge > 0.5).float()
clothes = clothes * edge
# Warp
# with dt[1]:
with cupy.cuda.Device(int(device.split(':')[-1])):
flow_out = warp_model(
real_image, clothes, edge
) # edge is only for parameter replacement during train, does not work in val
(
warped_cloth,
last_flow,
cond_fea_all,
warp_fea_all,
flow_all,
delta_list,
x_all,
x_edge_all,
delta_x_all,
delta_y_all,
) = flow_out
warped_edge = F.grid_sample(
edge,
last_flow.permute(0, 2, 3, 1),
mode='bilinear',
padding_mode='zeros',
align_corners=align_corners,
)
# Gen
# with dt[2]:
gen_inputs = torch.cat([real_image, warped_cloth, warped_edge], 1)
gen_outputs = gen_model(gen_inputs)
p_rendered, m_composite = torch.split(gen_outputs, [3, 1], 1)
p_rendered = torch.tanh(p_rendered)
m_composite = torch.sigmoid(m_composite)
m_composite = m_composite * warped_edge
p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite)
# seen += len(p_tryon)
# Save images
for j in range(len(data['p_name'])):
p_name = data['p_name'][j]
tv.utils.save_image(
p_tryon[j],
tryon_dir / p_name,
nrow=int(1),
normalize=True,
value_range=(-1, 1),
)
combine = torch.cat(
[real_image[j].float(), clothes[j], warped_cloth[j], p_tryon[j]], -1
).squeeze()
tv.utils.save_image(
combine,
visualize_dir / p_name,
nrow=int(1),
normalize=True,
value_range=(-1, 1),
)
fid = calculate_fid_given_paths(
paths=[str(img_dir), str(tryon_dir)],
batch_size=50,
device=device,
)
if not save_img:
shutil.rmtree(Path(save_dir) / 'results')
# FID
metrics['fid'] = fid
# Log
metrics_str = 'Metric, {}'.format(', '.join([f'{k}: {v}' for k, v in metrics.items()]))
print_log(log_path, metrics_str)
return metrics
def main(opt):
# Device
device = select_device(opt.device, batch_size=opt.batch_size)
log_path = Path(opt.save_dir) / 'log.txt'
# Model
warp_model = AFWM(3, opt.align_corners).to(device)
warp_model.eval()
warp_ckpt = get_ckpt(opt.pf_warp_checkpoint)
load_ckpt(warp_model, warp_ckpt)
print_log(log_path, f'Load pretrained parser-free warp from {opt.pf_warp_checkpoint}')
gen_model = MobileNetV2_unet(7, 4).to(device)
gen_model.eval()
gen_ckpt = get_ckpt(opt.pf_gen_checkpoint)
load_ckpt(gen_model, gen_ckpt)
print_log(log_path, f'Load pretrained parser-free gen from {opt.pf_gen_checkpoint}')
# Dataloader
test_data = LoadVITONDataset(path=opt.dataroot, phase='test', size=(256, 192))
data_loader = DataLoader(
test_data, batch_size=opt.batch_size, shuffle=False, num_workers=opt.workers
)
run_val_pf(
data_loader=data_loader,
models={'warp': warp_model, 'gen': gen_model},
align_corners=opt.align_corners,
device=device,
log_path=log_path,
save_dir=opt.save_dir,
img_dir=Path(opt.dataroot) / 'test_img',
save_img=True,
)
if __name__ == "__main__":
opt = TestOptions().parse_opt()
main(opt)