Given a list of dominoes
, dominoes[i] = [a, b]
is equivalent to dominoes[j] = [c, d]
if and only if either (a == c
and b == d
), or (a == d
and b == c
) - that is, one domino can be rotated to be equal to another domino.
Return the number of pairs (i, j)
for which 0 <= i < j < dominoes.length
, and dominoes[i]
is equivalent to dominoes[j]
.
Example 1:
Input: dominoes = [[1,2],[2,1],[3,4],[5,6]] Output: 1
Example 2:
Input: dominoes = [[1,2],[1,2],[1,1],[1,2],[2,2]] Output: 3
Constraints:
1 <= dominoes.length <= 4 * 104
dominoes[i].length == 2
1 <= dominoes[i][j] <= 9
class Solution:
def numEquivDominoPairs(self, dominoes: List[List[int]]) -> int:
counter = Counter()
ans = 0
for a, b in dominoes:
v = a * 10 + b if a > b else b * 10 + a
ans += counter[v]
counter[v] += 1
return ans
class Solution {
public int numEquivDominoPairs(int[][] dominoes) {
int ans = 0;
int[] counter = new int[100];
for (int[] d : dominoes) {
int v = d[0] > d[1] ? d[0] * 10 + d[1] : d[1] * 10 + d[0];
ans += counter[v];
++counter[v];
}
return ans;
}
}
class Solution {
public int numEquivDominoPairs(int[][] dominoes) {
int[] counter = new int[100];
for (int[] d : dominoes) {
int v = d[0] > d[1] ? d[0] * 10 + d[1] : d[1] * 10 + d[0];
++counter[v];
}
int ans = 0;
for (int c : counter) {
ans += c * (c - 1) / 2;
}
return ans;
}
}
class Solution {
public:
int numEquivDominoPairs(vector<vector<int>>& dominoes) {
vector<int> counter(100);
int ans = 0;
for (auto& d : dominoes)
{
int v = d[0] > d[1] ? d[0] * 10 + d[1] : d[1] * 10 + d[0];
ans += counter[v];
++counter[v];
}
return ans;
}
};
func numEquivDominoPairs(dominoes [][]int) int {
counter := make([]int, 100)
for _, d := range dominoes {
if d[1] < d[0] {
d[0], d[1] = d[1], d[0]
}
v := d[0]*10 + d[1]
counter[v]++
}
ans := 0
for _, c := range counter {
ans += c * (c - 1) / 2
}
return ans
}