-
Notifications
You must be signed in to change notification settings - Fork 436
/
train.py
113 lines (93 loc) · 4.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
By kyubyong park. [email protected].
https://www.github.com/kyubyong/tacotron
'''
from __future__ import print_function
import os
from hyperparams import Hyperparams as hp
import tensorflow as tf
from tqdm import tqdm
from data_load import get_batch, load_vocab
from modules import *
from networks import encoder, decoder1, decoder2
from utils import *
class Graph:
def __init__(self, mode="train"):
# Load vocabulary
self.char2idx, self.idx2char = load_vocab()
# Set phase
is_training=True if mode=="train" else False
# Graph
# Data Feeding
# x: Text. (N, Tx)
# y: Reduced melspectrogram. (N, Ty//r, n_mels*r)
# z: Magnitude. (N, Ty, n_fft//2+1)
if mode=="train":
self.x, self.y, self.z, self.fnames, self.num_batch = get_batch()
elif mode=="eval":
self.x = tf.placeholder(tf.int32, shape=(None, None))
self.y = tf.placeholder(tf.float32, shape=(None, None, hp.n_mels*hp.r))
self.z = tf.placeholder(tf.float32, shape=(None, None, 1+hp.n_fft//2))
self.fnames = tf.placeholder(tf.string, shape=(None,))
else: # Synthesize
self.x = tf.placeholder(tf.int32, shape=(None, None))
self.y = tf.placeholder(tf.float32, shape=(None, None, hp.n_mels * hp.r))
# Get encoder/decoder inputs
self.encoder_inputs = embed(self.x, len(hp.vocab), hp.embed_size) # (N, T_x, E)
self.decoder_inputs = tf.concat((tf.zeros_like(self.y[:, :1, :]), self.y[:, :-1, :]), 1) # (N, Ty/r, n_mels*r)
self.decoder_inputs = self.decoder_inputs[:, :, -hp.n_mels:] # feed last frames only (N, Ty/r, n_mels)
# Networks
with tf.variable_scope("net"):
# Encoder
self.memory = encoder(self.encoder_inputs, is_training=is_training) # (N, T_x, E)
# Decoder1
self.y_hat, self.alignments = decoder1(self.decoder_inputs,
self.memory,
is_training=is_training) # (N, T_y//r, n_mels*r)
# Decoder2 or postprocessing
self.z_hat = decoder2(self.y_hat, is_training=is_training) # (N, T_y//r, (1+n_fft//2)*r)
# monitor
self.audio = tf.py_func(spectrogram2wav, [self.z_hat[0]], tf.float32)
if mode in ("train", "eval"):
# Loss
self.loss1 = tf.reduce_mean(tf.abs(self.y_hat - self.y))
self.loss2 = tf.reduce_mean(tf.abs(self.z_hat - self.z))
self.loss = self.loss1 + self.loss2
# Training Scheme
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.lr = learning_rate_decay(hp.lr, global_step=self.global_step)
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
## gradient clipping
self.gvs = self.optimizer.compute_gradients(self.loss)
self.clipped = []
for grad, var in self.gvs:
grad = tf.clip_by_norm(grad, 5.)
self.clipped.append((grad, var))
self.train_op = self.optimizer.apply_gradients(self.clipped, global_step=self.global_step)
# Summary
tf.summary.scalar('{}/loss1'.format(mode), self.loss1)
tf.summary.scalar('{}/loss'.format(mode), self.loss)
tf.summary.scalar('{}/lr'.format(mode), self.lr)
tf.summary.image("{}/mel_gt".format(mode), tf.expand_dims(self.y, -1), max_outputs=1)
tf.summary.image("{}/mel_hat".format(mode), tf.expand_dims(self.y_hat, -1), max_outputs=1)
tf.summary.image("{}/mag_gt".format(mode), tf.expand_dims(self.z, -1), max_outputs=1)
tf.summary.image("{}/mag_hat".format(mode), tf.expand_dims(self.z_hat, -1), max_outputs=1)
tf.summary.audio("{}/sample".format(mode), tf.expand_dims(self.audio, 0), hp.sr)
self.merged = tf.summary.merge_all()
if __name__ == '__main__':
g = Graph(); print("Training Graph loaded")
# with g.graph.as_default():
sv = tf.train.Supervisor(logdir=hp.logdir, save_summaries_secs=60, save_model_secs=0)
with sv.managed_session() as sess:
while 1:
for _ in tqdm(range(g.num_batch), total=g.num_batch, ncols=70, leave=False, unit='b'):
_, gs = sess.run([g.train_op, g.global_step])
# Write checkpoint files
if gs % 1000 == 0:
sv.saver.save(sess, hp.logdir + '/model_gs_{}k'.format(gs//1000))
# plot the first alignment for logging
al = sess.run(g.alignments)
plot_alignment(al[0], gs)
print("Done")