-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
345 lines (311 loc) · 16.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12123'
import yaml
import time
import copy
import argparse
import wandb
start_time = time.strftime('%Y-%m-%d_%H-%M-%S_', time.localtime())
import warnings
import numpy as np
from tqdm import tqdm
import torch
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from torch_geometric.loader import DataLoader
from models import model_map
from data import dataset_map
from evaluator import analyze_stability_for_molecules
from utils import init_seeds, EMA, Queue, gradient_clipping, DistributionProperty, write_log
from signal import signal, SIGPIPE, SIG_DFL
signal(SIGPIPE,SIG_DFL)
# os.environ["NCCL_DEBUG"] = "INFO"
# os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
# os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
# os.environ["NCCL_DEBUG_SUBSYS"] = "COLL"
# os.environ["NCCL_DEBUG_FILE"] = "/output/nccl_logs.txt"
CURRENT_PATH = os.path.dirname(os.path.realpath(__file__))
warnings.filterwarnings('ignore')
# def train(model, loader, optimizer, device, model_config, disable_tqdm, model_ema, ema, gradnorm_queue=None, use_wandb=False):
# model.train()
# nll_epoch, n_samples = [], 0
# iter_size = 16
# tqdm_bar = tqdm(loader, desc="Iteration", disable=disable_tqdm)
# optimizer.zero_grad()
# for step, batch in enumerate(tqdm_bar):
# batch = batch.to(device)
# neg_log_pxh, reg_term, mean_abs_z = model(batch, device)
# loss = (neg_log_pxh + 0.001 * reg_term) / iter_size
# loss.backward()
# if model_config['clip_grad']:
# grad_norm = gradient_clipping(model, gradnorm_queue)
# else:
# grad_norm = 0.
# if (step + 1) % iter_size == 0:
# optimizer.step()
# optimizer.zero_grad()
# if model_config['ema_decay'] > 0:
# ema.update_model_average(model_ema, model)
# nll_epoch.append(neg_log_pxh.item())
# wandb.log({"Batch NLL": neg_log_pxh.item()}, commit=True) if not disable_tqdm and use_wandb else None
# nll_epoch = np.mean(nll_epoch)
# wandb.log({"Train Epoch NLL": nll_epoch}, commit=True) if not disable_tqdm and use_wandb else None
# return nll_epoch
def train(model, loader, optimizer, device, model_config, disable_tqdm, model_ema, ema, gradnorm_queue=None, use_wandb=False):
model.train()
nll_epoch, n_samples = [], 0
tqdm_bar = tqdm(loader, desc="Iteration", disable=disable_tqdm)
for step, batch in enumerate(tqdm_bar):
batch = batch.to(device)
optimizer.zero_grad()
neg_log_pxh, reg_term, mean_abs_z = model(batch, device)
loss = neg_log_pxh + 0.001 * reg_term
loss.backward()
if model_config['clip_grad']:
grad_norm = gradient_clipping(model, gradnorm_queue)
else:
grad_norm = 0.
optimizer.step()
if model_config['ema_decay'] > 0:
ema.update_model_average(model_ema, model)
nll_epoch.append(neg_log_pxh.item())
wandb.log({"Batch NLL": neg_log_pxh.item()}, commit=True) if not disable_tqdm and use_wandb else None
nll_epoch = np.mean(nll_epoch)
wandb.log({"Train Epoch NLL": nll_epoch}, commit=True) if not disable_tqdm and use_wandb else None
return nll_epoch
def analyze(model, model_config, dataset_config, device, disable_tqdm, prop_dist=None):
model.eval()
n_samples, batch_size = model_config['n_samples'], model_config['sample_batch_size']
batch_size = min(batch_size, n_samples)
molecules = {'pos': [], 'onehot': [], 'node_mask': []}
tqdm_bar = tqdm(range(int(n_samples / batch_size)), desc="Iteration", disable=disable_tqdm)
print(time.strftime('%Y-%m-%d_%H-%M-%S_', time.localtime()))
for i in tqdm_bar:
with torch.no_grad():
pos, onehot, atom_num, degree, node_mask = model.module.sample(batch_size, dataset_config['max_n_nodes'],
device, prop_dist)
molecules['pos'].append(pos.detach().cpu())
molecules['onehot'].append(onehot.detach().cpu())
molecules['node_mask'].append(node_mask.detach().cpu())
molecules = {key: torch.cat(molecules[key], dim=0) for key in molecules}
validity, rdkit_metrics, rdkit_unique = analyze_stability_for_molecules(molecules, dataset_config)
print(time.strftime('%Y-%m-%d_%H-%M-%S_', time.localtime()))
return validity, rdkit_metrics, rdkit_unique
def valid(model, loader, device, disable_tqdm):
model.eval()
nll_epoch, n_samples = 0, 0
tqdm_bar = tqdm(loader, desc="Iteration", disable=disable_tqdm)
for step, batch in enumerate(tqdm_bar):
batch = batch.to(device)
with torch.no_grad():
nll, _, _ = model(batch, device)
nll_epoch += nll.item() * batch.num_graphs
n_samples += batch.num_graphs
return nll_epoch / n_samples
def test(model, loader, device, disable_tqdm):
model.eval()
nll_epoch, n_samples = 0, 0
tqdm_bar = tqdm(loader, desc="Iteration", disable=disable_tqdm)
for step, batch in enumerate(tqdm_bar):
batch = batch.to(device)
with torch.no_grad():
nll, _, _ = model(batch, device)
nll_epoch += nll.item() * batch.num_graphs
n_samples += batch.num_graphs
return nll_epoch / n_samples
def main(rank, world_size, args):
model_name = args.model
dataset_name = args.data
use_wandb = args.wandb
model_config = yaml.load(open(os.path.join(CURRENT_PATH, 'config/model/' + model_name + '.yaml'), "r"),
Loader=yaml.FullLoader)
dataset_config = yaml.load(open(os.path.join(CURRENT_PATH, 'config/dataset/' + dataset_name + ".yaml"), "r"),
Loader=yaml.FullLoader)
dist.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
init_seeds(model_config['seed'] + rank)
# Initialization
if torch.cuda.is_available():
local_rank = dist.get_rank()
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
else:
device = torch.device('cpu')
disable_tqdm = rank != 0
if rank == 0 and use_wandb:
wandb.init(config={**model_config, **dataset_config},
project=start_time + '_' + args.comment,
name=model_name + '_on_' + dataset_name)
wandb.save('*.txt')
# Prepare dataset.
dataset_class = dataset_map[dataset_name]
dataset = dataset_class(root=dataset_config['root'],
model_config=model_config,
dataset_config=dataset_config)
print(len(dataset.data.x))
split_idx = dataset.get_split_idx(len(dataset.data.n_nodes))
if model_config['train_subset']:
subset_ratio = 0.1
subset_idx = torch.randperm(len(split_idx['train']))[:int(subset_ratio * len(split_idx['train']))]
train_sampler = DistributedSampler(dataset[split_idx['train']][subset_idx], num_replicas=world_size,
rank=rank, shuffle=True)
train_loader = DataLoader(dataset[split_idx['train']][subset_idx], batch_size=model_config['batch_size'],
shuffle=False, num_workers=model_config['num_workers'], sampler=train_sampler)
else:
train_sampler = DistributedSampler(dataset[split_idx['train']], num_replicas=world_size,
rank=rank, shuffle=True)
train_loader = DataLoader(dataset[split_idx['train']], batch_size=model_config['batch_size'], shuffle=False,
num_workers=model_config['num_workers'], sampler=train_sampler)
if model_config['context']:
prop_dist = DistributionProperty(train_loader, model_config['context_col'])
else:
prop_dist = None
print("Lentgh of dataloader!", dist.get_rank(), len(train_loader)) # check all local_rank have equal batch
valid_loader = DataLoader(dataset[split_idx['valid']], batch_size=model_config['batch_size'] * 2,
shuffle=False, num_workers=model_config['num_workers'])
test_loader = DataLoader(dataset[split_idx['test']], batch_size=model_config['batch_size'] * 2,
shuffle=False, num_workers=model_config['num_workers'])
if not disable_tqdm:
print(f"Number of training samples: {len(dataset[split_idx['train']])}, "
f"Number of validation samples: {len(dataset[split_idx['valid']])}, "
f"Number of test samples: {len(dataset[split_idx['test']])}")
del dataset
model_class = model_map[model_name]
model = model_class(model_config, dataset_config).to(device)
model_config['ckpt_dir'] = "" if disable_tqdm else model_config['ckpt_dir']
model_config['enable_tb'] = False if disable_tqdm else model_config['enable_tb']
if model_config['load_ckpt']:
ckpt = torch.load(model_config['load_ckpt_dir'])
model.load_state_dict(ckpt['model_state_dict'])
if not disable_tqdm:
print('Load saved ckpt complete!')
model = DistributedDataParallel(model, device_ids=[rank])
model_wo_ddp = model.module
num_params = sum(p.numel() for p in model_wo_ddp.parameters())
print(f'Model successfully loaded, Number of Params: {num_params}') if not disable_tqdm else None
if model_config['ema_decay'] > 0:
model_ema = copy.deepcopy(model)
ema = EMA(model_config['ema_decay'])
else:
model_ema = model
ema = None
if model_config['clip_grad']:
gradnorm_queue = Queue()
gradnorm_queue.add(3000)
optimizer = optim.Adam(model.parameters(), lr=model_config['lr'], amsgrad=True, weight_decay=1e-12)
if model_config['load_ckpt']:
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
log_dir = os.path.join(model_config['log_dir'], model_name + '_' + dataset_name)
if not os.path.exists(log_dir) and rank == 0:
os.makedirs(log_dir)
tb_writer = SummaryWriter(log_dir) if model_config['enable_tb'] else None
log_path = os.path.join(log_dir, start_time + "log.txt")
model_logs = {'model_config': model_config}
data_logs = {'dataset_config': dataset_config}
write_log(log_path, model_logs)
write_log(log_path, data_logs)
best_loss = 1e8
best_mol_stable = 0.
best_validity = 0.
dist.barrier()
print('Start training...') if not disable_tqdm else None
for epoch in range(0, model_config['epochs']):
train_loader.sampler.set_epoch(epoch)
if not disable_tqdm:
print("=====Epoch {}".format(epoch))
print("Training...")
train_loss = train(model, train_loader, optimizer, device, model_config, disable_tqdm,
model_ema, ema, gradnorm_queue, use_wandb)
if not disable_tqdm:
write_log(log_path, f"\rEpoch: {epoch}, Loss {train_loss:.4f}")
print(f"\rEpoch: {epoch}, Loss {train_loss:.4f}")
if epoch % model_config['analyze_iter'] == 0 and epoch >= model_config['analyze_threshold']:
print('Analyzing...') if not disable_tqdm else None
validity, rdkit_metrics, rdkit_unique = analyze(model_ema, model_config, dataset_config,
device, disable_tqdm, prop_dist)
validity, rdkit_metrics = validity.to(device), rdkit_metrics.to(device)
validity_gather_list = [torch.zeros_like(validity) for _ in range(world_size)]
rdkit_gather_list = [torch.zeros_like(rdkit_metrics) for _ in range(world_size)]
dist.all_gather(validity_gather_list, validity)
dist.all_gather(rdkit_gather_list, rdkit_metrics)
validity = torch.cat(validity_gather_list, dim=0).mean(0) if not disable_tqdm else None
rdkit_metrics = torch.cat(rdkit_gather_list, dim=0).mean(0) if not disable_tqdm else None
analyze_dict = {
'mol_stable': validity[0].item(),
'atom_stable': validity[1].item(),
'rdkit_validity': rdkit_metrics[0].item(),
'rdkit_uniqueness': rdkit_metrics[1].item(),
'rdkit_novelty': rdkit_metrics[2].item()
} if not disable_tqdm else None
if not disable_tqdm:
wandb.log(analyze_dict) if use_wandb else None
write_log(log_path, analyze_dict)
print(analyze_dict) if not disable_tqdm else None
if not disable_tqdm:
if analyze_dict['mol_stable'] > best_mol_stable:
best_mol_stable = analyze_dict['mol_stable']
checkpoint = {
"epoch": epoch,
"model_state_dict": model_wo_ddp.state_dict(),
"optimizer_state_dict": optimizer.state_dict()
}
torch.save(checkpoint, os.path.join(model_config['ckpt_dir'], f"{start_time}mol_stable.pt"))
if analyze_dict['rdkit_validity'] > best_validity:
best_validity = analyze_dict['rdkit_validity']
checkpoint = {
"epoch": epoch,
"model_state_dict": model_wo_ddp.state_dict(),
"optimizer_state_dict": optimizer.state_dict()
}
torch.save(checkpoint, os.path.join(model_config['ckpt_dir'], f"{start_time}validity.pt"))
if not disable_tqdm and epoch % model_config['valid_iter'] == 0:
print("Evaluating...")
valid_loss = valid(model_ema, valid_loader, device, disable_tqdm)
print(f"Epoch: {epoch}, Valid: {valid_loss:.4f}")
write_log(log_path, f"Epoch: {epoch}, Valid: {valid_loss:.4f}")
wandb.log({'Valid loss': valid_loss}, commit=True) if use_wandb else None
if valid_loss < best_loss:
best_loss = valid_loss
checkpoint = {
"epoch": epoch,
"model_state_dict": model_wo_ddp.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
# "scheduler_state_dict": scheduler.state_dict(),
"best_valid": best_loss,
'model_ema': model_ema.state_dict() if model_config['ema_decay'] > 0 else None
}
torch.save(checkpoint, os.path.join(model_config['ckpt_dir'], f"{start_time}checkpoint.pt"))
if model_config['enable_tb']:
tb_writer.add_scalar("evaluation/train", train_loss, epoch)
tb_writer.add_scalar("evaluation/valid", valid_loss, epoch)
if rank == 0:
best_model = model
best_ckpt = torch.load(os.path.join(model_config['ckpt_dir'], f"{start_time}checkpoint.pt"))
print(f"Best valid: {best_ckpt['best_valid']:.4f}")
write_log(log_path, f"Best valid: {best_ckpt['best_valid']:.4f}")
best_model.module.load_state_dict(best_ckpt['model_state_dict'])
test_loss = test(best_model, test_loader, device, disable_tqdm)
print(f"Test: {test_loss:.4f}")
wandb.log({'Test loss': test_loss}, commit=True) if use_wandb else None
if model_config['enable_tb']:
tb_writer.close()
torch.distributed.destroy_process_group()
print("Finished training!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default='gfmdiff', action='store',
help="molecular graph generation models")
parser.add_argument("--data", type=str, default="qm9", action='store',
help="the training data")
parser.add_argument("--wandb", action='store_true', default=False)
parser.add_argument("--comment", type=str, default="None", action='store',
help="comment on the experiment")
args, unknown = parser.parse_known_args()
os.environ['NCCL_SHM_DISABLE'] = '1'
world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, args), nprocs=world_size, join=True)