-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdirectional_bias.py
151 lines (121 loc) · 5.91 KB
/
directional_bias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import torch
import torch.utils.data as data
from torch.utils.data import DataLoader
from utils import train
class DirectionalLinearDataset(data.Dataset):
def __init__(self,
v,
num_samples=10000,
sigma=3,
epsilon=1,
shape=(1, 32, 32)
):
self.v = v
self.num_samples = num_samples
self.sigma = sigma
self.epsilon = epsilon
self.shape = shape
self.data, self.targets = self._generate_dataset(self.num_samples)
super()
def __getitem__(self, index):
img, target = self.data[index], int(self.targets[index])
return img, target
def __len__(self):
return self.num_samples
def _generate_dataset(self, n_samples):
if n_samples > 1:
data_plus = self._generate_samples(n_samples // 2 + n_samples % 2, 0).astype(np.float32)
labels_plus = np.zeros([n_samples // 2 + n_samples % 2]).astype(np.long)
data_minus = self._generate_samples(n_samples // 2, 1).astype(np.float32)
labels_minus = np.ones([n_samples // 2]).astype(np.long)
data = np.r_[data_plus, data_minus]
labels = np.r_[labels_plus, labels_minus]
else:
data = self._generate_samples(1, 0).astype(np.float32)
labels = np.zeros([1]).astype(np.long)
return torch.from_numpy(data), torch.from_numpy(labels)
def _generate_samples(self, n_samples, label):
data = self._generate_noise_floor(n_samples)
sign = 1 if label == 0 else -1
data = sign * self.epsilon / 2 * self.v[np.newaxis, :] + self._project_orthogonal(data)
return data
def _generate_noise_floor(self, n_samples):
shape = [n_samples] + self.shape
data = self.sigma * np.random.randn(*shape)
return data
def _project(self, x):
proj_x = np.reshape(x, [x.shape[0], -1]) @ np.reshape(self.v, [-1, 1])
return proj_x[:, :, np.newaxis, np.newaxis] * self.v[np.newaxis, :]
def _project_orthogonal(self, x):
return x - self._project(x)
def generate_synthetic_data(v,
num_train=10000,
num_test=10000,
sigma=3,
epsilon=1,
shape=(1, 32, 32),
batch_size=128):
trainset = DirectionalLinearDataset(v,
num_samples=num_train,
sigma=sigma,
epsilon=epsilon,
shape=shape)
testset = DirectionalLinearDataset(v,
num_samples=num_train,
sigma=sigma,
epsilon=epsilon,
shape=shape)
trainloader = DataLoader(trainset,
shuffle=True,
pin_memory=True,
num_workers=2,
batch_size=batch_size)
testloader = DataLoader(testset,
shuffle=False,
pin_memory=True,
num_workers=2,
batch_size=batch_size
)
return trainloader, testloader, trainset, testset
if __name__ == '__main__':
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
from models import TransformLayer # It normalizes the data to have prespecified mean and stddev
from models import LeNet
v = torch.zeros([1, 32, 32]) # Create empty vector
v_fft = torch.rfft(v, signal_ndim=2)
v_fft[0, 3, 4, 1] = 1 # Select coordinate in fourier space
v = torch.irfft(v_fft, signal_ndim=2, signal_sizes=[32, 32])
v = v / v.norm()
trainloader, testloader, trainset, testset = generate_synthetic_data(v.numpy(),
num_train=10000,
num_test=10000,
sigma=3,
epsilon=1,
shape=[1, 32, 32],
batch_size=128)
v = np.random.randn(1, 32, 32)
v = v / np.linalg.norm(v)
trainloader, testloader, trainset, testset = generate_synthetic_data(v,
num_train=10000,
num_test=10000,
sigma=3,
epsilon=1,
shape=[1, 32, 32],
batch_size=128)
# net = LogReg(input_dim=32 * 32, num_classes=2)
# net = VGG11_bn(num_channels=1, num_classes=2)
# net = ResNet18(num_channels=1, num_classes=2)
# net = DenseNet121(num_channels=1, num_classes=2)
net = LeNet(num_channels=1, num_classes=2)
net = net.to(DEVICE)
trained_model = train(model=net,
trans=TransformLayer(mean=torch.tensor(0., device=DEVICE),
std=torch.tensor(1., device=DEVICE)),
trainloader=trainloader,
testloader=testloader,
epochs=20,
max_lr=0.5,
momentum=0,
weight_decay=0
)