forked from jcrocholl/rostock
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdemo.py
executable file
·103 lines (81 loc) · 2.72 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/python
import math
class Vector(object):
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def __abs__(self):
return math.sqrt(self.x * self.x +
self.y * self.y +
self.z * self.z)
def __add__(self, other):
return Vector(self.x + other.x,
self.y + other.y,
self.z + other.z)
def __sub__(self, other):
return Vector(self.x - other.x,
self.y - other.y,
self.z - other.z)
def __mul__(self, factor):
return Vector(self.x * factor,
self.y * factor,
self.z * factor)
def gcode(self):
return 'X%.3f Y%.3f Z%.3f' % (self.x, self.y, self.z)
SIN_60 = math.sin(math.pi / 3)
COS_60 = 0.5
RADIUS = 175 - 33 - 18
ZERO_OFFSET = -7
TOWER_1 = Vector(-SIN_60 * RADIUS, -COS_60*RADIUS, 0)
TOWER_2 = Vector(SIN_60 * RADIUS, -COS_60*RADIUS, 0)
TOWER_3 = Vector(0, RADIUS, 0)
def delta(v):
t1 = TOWER_1 - v
t2 = TOWER_2 - v
t3 = TOWER_3 - v
return Vector(
v.z + math.sqrt(250*250 - t1.x*t1.x - t1.y*t1.y) + ZERO_OFFSET,
v.z + math.sqrt(250*250 - t2.x*t2.x - t2.y*t2.y) + ZERO_OFFSET,
v.z + math.sqrt(250*250 - t3.x*t3.x - t3.y*t3.y) + ZERO_OFFSET)
def linear(start, stop, speed):
cartesian_mm = abs(stop - start)
steps = max(1, int(cartesian_mm * 50 / min(speed, 200)))
cartesian_mm /= steps
previous = delta(start)
for step in range(steps):
d = delta(start + (stop - start) * (float(step + 1) / steps))
print 'G1', d.gcode(),
delta_mm = abs(d - previous)
factor = delta_mm / cartesian_mm
print 'F%.3f' % (60 * speed * factor)
previous = d
print 'G21 ; set units to millimeters'
print 'G90 ; use absolute positioning'
print 'G28 ; home all axes'
SIZE = 60
SIZE2 = SIZE * math.sqrt(2) # diagonal
previous = Vector(0, 0, 0)
print 'G1 F3000'
speeds = [100, 200, 300, 400]
for speed in speeds:
print 'G1 F%d' % (speed * 60)
z = 0 # (speed - 100) / 5
for a in xrange(0, 1441, min(speed/100, 3)):
v = Vector(math.sin(a * math.pi / 180) * SIZE,
math.cos(a * math.pi / 180) * SIZE,
z)
d = delta(v)
print 'G1', d.gcode()
previous = v
for y in xrange(-int(SIZE2), int(SIZE2), 10):
x = SIZE2 - abs(y)
vector = Vector(-x, y, z)
linear(previous, vector, speed)
previous = vector
vector = Vector(x, y, z)
linear(previous, vector, speed)
previous = vector
# linear(previous, Vector(0, 0, 0), 300)
print 'G1 X400 Y400 Z400'
print 'M84 ; all motors off'