场景: yelp, 美团, airbnb
- Design a system to find nearby restaurants
- Design a system to match drivers with riders for Uber
- Design a system to compute ETA for food delivery
特点: 如果是event 推荐这种注重实效性、位置性的推荐,event发生后不存在了,所有item可以认为都是冷启动 对于位置的挖掘可采用图特征或模型
products/use cases
objective
- connect people with great local businesses
constraint
- data
- volume
- latency
预测目标
- 是否点击
- 停留时间(dwell time), 可转化为t/(t+1)来逼近sigmoid函数,t很大时接近1;很小时接近0
- user
- User location: For localized recommendations we need to consider only businesses near the city or neighborhood where the user is located
- sparse
- dense
retrieval
- 取决于filter
ranking
rerank
- offline
- NDCG
- MAP
- online: A/B testing holdout canary
- batch serving
- online serving
冷启动的item
- 双塔可以采用default embedding, 而不是random initial