-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathvalidate.py
95 lines (75 loc) · 3.71 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright 2021 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""File description: Realize the verification function after model training."""
import os
import cv2
import numpy as np
import torch
from natsort import natsorted
import config
import imgproc
from model import FSRCNN
def main() -> None:
# Initialize the super-resolution model
model = FSRCNN(config.upscale_factor).to(config.device)
print("Build FSRCNN model successfully.")
# Load the super-resolution model weights
checkpoint = torch.load(config.model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint["state_dict"])
print(f"Load FSRCNN model weights `{os.path.abspath(config.model_path)}` successfully.")
# Create a folder of super-resolution experiment results
results_dir = os.path.join("results", "test", config.exp_name)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
# Start the verification mode of the model.
model.eval()
# Turn on half-precision inference.
model.half()
# Initialize the image evaluation index.
total_psnr = 0.0
# Get a list of test image file names.
file_names = natsorted(os.listdir(config.hr_dir))
# Get the number of test image files.
total_files = len(file_names)
for index in range(total_files):
lr_image_path = os.path.join(config.lr_dir, file_names[index])
sr_image_path = os.path.join(config.sr_dir, file_names[index])
hr_image_path = os.path.join(config.hr_dir, file_names[index])
print(f"Processing `{os.path.abspath(hr_image_path)}`...")
# Read LR image and HR image
lr_image = cv2.imread(lr_image_path).astype(np.float32) / 255.0
hr_image = cv2.imread(hr_image_path).astype(np.float32) / 255.0
# Convert BGR image to YCbCr image
lr_ycbcr_image = imgproc.bgr2ycbcr(lr_image, use_y_channel=False)
hr_ycbcr_image = imgproc.bgr2ycbcr(hr_image, use_y_channel=False)
# Split YCbCr image data
lr_y_image, lr_cb_image, lr_cr_image = cv2.split(lr_ycbcr_image)
hr_y_image, hr_cb_image, hr_cr_image = cv2.split(hr_ycbcr_image)
# Convert Y image data convert to Y tensor data
lr_y_tensor = imgproc.image2tensor(lr_y_image, range_norm=False, half=True).to(config.device).unsqueeze_(0)
hr_y_tensor = imgproc.image2tensor(hr_y_image, range_norm=False, half=True).to(config.device).unsqueeze_(0)
# Only reconstruct the Y channel image data.
with torch.no_grad():
sr_y_tensor = model(lr_y_tensor).clamp_(0, 1.0)
# Cal PSNR
total_psnr += 10. * torch.log10(1. / torch.mean((sr_y_tensor - hr_y_tensor) ** 2))
# Save image
sr_y_image = imgproc.tensor2image(sr_y_tensor, range_norm=False, half=True)
sr_y_image = sr_y_image.astype(np.float32) / 255.0
sr_ycbcr_image = cv2.merge([sr_y_image, hr_cb_image, hr_cr_image])
sr_image = imgproc.ycbcr2bgr(sr_ycbcr_image)
cv2.imwrite(sr_image_path, sr_image * 255.0)
print(f"PSNR: {total_psnr / total_files:4.2f}dB.\n")
if __name__ == "__main__":
main()