-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmouton.py
132 lines (107 loc) · 3.61 KB
/
mouton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
Projet 2 : Ricosheep
Amal ABDALLAH
Nicolas SEBAN
Adam SOUIOU
"""
import operator
from dataclasses import dataclass
axes = {'Up': 'y', 'Down': 'y',
'Left': 'x', 'Right': 'x'}
coeff_axe = {'Up': -1, 'Down': 1,
'Left': -1, 'Right': 1}
axes_cases = {'Up': 'centre_y', 'Down': 'centre_y',
'Left': 'centre_x', 'Right': 'centre_x'}
@dataclass
class Vitesse:
x: float
y: float
class Mouton:
x: int
y: int
centre_x: float
centre_y: float
vitesse: Vitesse
en_deplacement: bool
__slots__ = tuple(__annotations__)
def __hash__(self):
return hash((self.y, self.x))
def __eq__(self, other):
if type(other) is tuple:
return (self.y, self.x) == other
return (self.y, self.x) == (other.y, other.x)
def __ne__(self, other):
if type(other) is tuple:
return (self.y, self.x) != other
return (self.y, self.x) != (other.y, other.x)
def __lt__(self, other):
if type(other) is tuple:
return (self.y, self.x) < other
return (self.y, self.x) < (other.y, other.x)
def __repr__(self):
return f'(y={self.y}, x={self.x})'
def __init__(self, y: int, x: int):
self.x = x
self.y = y
self.vitesse = Vitesse(0, 0)
self.en_deplacement = False
def repositionnement(self, cases):
"""
Repositionne le mouton sur le centre de la case.
"""
case = cases[self.y][self.x]
self.centre_x = case.centre_x
self.centre_y = case.centre_y
self.vitesse.x = 0
self.vitesse.y = 0
self.en_deplacement = False
def deplace(self, direction: str, plateau):
"""
Déplace le mouton jusqu'a ce qu'il rencontre un obstacle
"""
pos_initiale = (self.y, self.x)
if direction == "Up":
while plateau.isPositionValid(self.x, self.y-1):
self.y -= 1
elif direction == "Down":
while plateau.isPositionValid(self.x, self.y+1):
self.y += 1
elif direction == "Left":
while plateau.isPositionValid(self.x-1, self.y):
self.x -= 1
elif direction == "Right":
while plateau.isPositionValid(self.x+1, self.y):
self.x += 1
self.en_deplacement = self != pos_initiale
def deplace_vitesse(self, mouton_initial, plateau, direction):
"""
Détermine la vitesse du mouton lors du déplacement animé
pour satisfaire la contrainte de durée imposée par le
plateau
"""
if self.en_deplacement:
distance = abs(
getattr(self, axes[direction])
- getattr(mouton_initial, axes[direction])
) * plateau.grille.largeur_case
setattr(
self.vitesse, axes[direction],
coeff_axe[direction] * (distance / plateau.duree_anime)
)
def outOfBound(self, direction, cases, dt):
"""
Vérifie si le mouton n'a pas dépassé sa case d'arrivée.
"""
if direction in self.outOfBound.LEFT_UP:
comparateur = operator.le
elif direction in self.outOfBound.RIGHT_DOWN:
comparateur = operator.ge
return comparateur(
getattr(
self,
axes_cases[direction]) + dt * getattr(self.vitesse,
axes[direction]),
getattr(cases[self.y][self.x], axes_cases[direction])
)
outOfBound.LEFT_UP = {'Left', 'Up'}
outOfBound.RIGHT_DOWN = {'Right', 'Down'}