-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBDMEP_data_processing.py
396 lines (333 loc) · 18.2 KB
/
BDMEP_data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import pandas as pd
import tkinter as tk
import webbrowser
import warnings
from datetime import datetime
from dateutil.relativedelta import relativedelta
from tkinter import filedialog
warnings.simplefilter("ignore")
file_path = ''
dict_columns_names ={
'Data Medicao':'date_YYYYMMDD',
'Hora Medicao':'hour_HHMM',
'CH (NUVENS ALTAS)(codigo)':'high_clouds_code',
'CL (NUVENS BAIXAS)(codigo)':'lower_clouds_code',
'CM (NUVENS MEDIAS)(codigo)':'medium_clouds_code',
'NEBULOSIDADE, HORARIA(décimos)':'hourly_cloudy_tenth',
'PRECIPITACAO TOTAL, HORARIO(mm)':'hourly_total_preciptation_mm',
'PRESSAO ATMOSFERICA AO NIVEL DA ESTACAO, HORARIA(mB)':'hourly_atm_pressure_station_level_mB',
'PRESSAO ATMOSFERICA AO NIVEL DO MAR, HORARIA(mB)':'hourly_atm_pressure_sea_level_mB',
'TEMPERATURA DO AR - BULBO SECO, HORARIA(°C)':'hourly_dry_bulb_air_temperature_celsius',
'TEMPERATURA DO AR - BULBO UMIDO, HORARIA(°C)':'hourly_humid_bulb_air_temperature_celsius',
'TEMPERATURA DO PONTO DE ORVALHO(°C)':'dew_point_temperature_celsius',
'UMIDADE RELATIVA DO AR, HORARIA(%)':'hourly_relative_air_humidity_percent',
'VENTO, DIRECAO HORARIA(codigo)':'hourly_wind_direction_code',
'VENTO, VELOCIDADE HORARIA(m/s)':'hourly_wind_speed_metersPerSec',
'VISIBILIDADE, HORARIA(codigo)':'hourly_visibility_code',
'DIRECAO PREDOMINANTE DO VENTO, MENSAL(° (gr))':'monthly_predominant_wind_direction_degrees',
'EVAPORACAO DO PICHE, MENSAL(mm)':'monthly_piche_evaporation_mm',
'EVAPOTRANSPIRACAO POTENCIAL, BH MENSAL(mm)':'monthly_potencial_evapotranspiration_mm',
'EVAPOTRANSPIRACAO REAL, BH MENSAL(mm)':'monthly_real_evapotranspiration_mm',
'INSOLACAO TOTAL, MENSAL(h)':'monthly_total_insolation_h',
'NEBULOSIDADE, MEDIA MENSAL(décimos)':'monthly_average_cloudy_tenth',
'NUMERO DE DIAS COM PRECIP. PLUV, MENSAL(número)':'monthly_number_of_days_with_rainfall_days',
'PRECIPITACAO TOTAL, MENSAL(mm)':'monthly_total_precipitation_mm',
'PRESSAO ATMOSFERICA, MEDIA MENSAL(mB)':'monthly_average_atm_pressure_mB',
'TEMPERATURA MAXIMA MEDIA, MENSAL(°C)':'monthly_average_max_temperature_celsius',
'TEMPERATURA MEDIA COMPENSADA, MENSAL(°C)':'monthly_compensated_average_temperature_celsius',
'TEMPERATURA MINIMA MEDIA, MENSAL(°C)':'monthly_average_min_temperature_celsius',
'UMIDADE RELATIVA DO AR, MEDIA MENSAL(%)':'monthly_average_relative_air_humidity_percent',
'VENTO, VELOCIDADE MAXIMA MENSAL(m/s)':'monthly_max_wind_speed_metersPerSec',
'VENTO, VELOCIDADE MEDIA MENSAL(m/s)':'monthly_average_wind_speed_metersPerSec',
'VISIBILIDADE, MEDIA MENSAL(codigo)':'monthly_average_visibility_code',
'EVAPORACAO DO PICHE, DIARIA(mm)':'daily_piche_evaporation_mm',
'INSOLACAO TOTAL, DIARIO(h)':'daily_total_insolation_h',
'PRECIPITACAO TOTAL, DIARIO(mm)':'daily_total_precipitation_mm',
'TEMPERATURA MAXIMA, DIARIA(°C)':'daily_max_temperature_celsius',
'TEMPERATURA MEDIA COMPENSADA, DIARIA(°C)':'daily_compensated_average_temperature_celsius',
'TEMPERATURA MINIMA, DIARIA(°C)':'daily_min_temperature_celsius',
'UMIDADE RELATIVA DO AR, MEDIA DIARIA(%)':'daily_average_relative_air_humidity_percent',
'UMIDADE RELATIVA DO AR, MINIMA DIARIA(%)':'daily_min_relative_air_humidity_percent',
'VENTO, VELOCIDADE MEDIA DIARIA(m/s)':'daily_average_wind_speed_metersPerSec',
'PRECIPITACAO TOTAL, DIARIO (AUT)(mm)':'daily_total_precipitation_percent',
'PRESSAO ATMOSFERICA MEDIA DIARIA (AUT)(mB)':'daily_average_atm_pressure_mB',
'TEMPERATURA DO PONTO DE ORVALHO MEDIA DIARIA (AUT)(°C)':'daily_average_dew_point_temperature_celsius',
'TEMPERATURA MAXIMA, DIARIA (AUT)(°C)':'daily_max_temperature_celsius',
'TEMPERATURA MEDIA, DIARIA (AUT)(°C)':'daily_average_temperature_celsius',
'TEMPERATURA MINIMA, DIARIA (AUT)(°C)':'daily_min_temperature_celsius',
'UMIDADE RELATIVA DO AR, MEDIA DIARIA (AUT)(%)':'daily_average_relative_air_humidity_percent',
'UMIDADE RELATIVA DO AR, MINIMA DIARIA (AUT)(%)':'daily_min_relative_air_humidity_percent',
'VENTO, RAJADA MAXIMA DIARIA (AUT)(m/s)':'daily_max_wind_gust_metersPerSec',
'VENTO, VELOCIDADE MEDIA DIARIA (AUT)(m/s)':'daily_average_wind_speed_metersPerSec',
'NUMERO DE DIAS COM PRECIP. PLUV, MENSAL (AUT)(número)':'monthly_number_of_days_with_rainfall_days',
'PRECIPITACAO TOTAL, MENSAL (AUT)(mm)':'monthly_total_precipitation_mm',
'PRESSAO ATMOSFERICA, MEDIA MENSAL (AUT)(mB)':'monthly_average_atm_pressure_mB',
'TEMPERATURA MEDIA, MENSAL (AUT)(°C)':'monthly_average_temperature_celsius',
'VENTO, VELOCIDADE MAXIMA MENSAL (AUT)(m/s)':'monthly_max_wind_speed_metersPerSec',
'VENTO, VELOCIDADE MEDIA MENSAL (AUT)(m/s)':'monthly_average_wind_speed_metersPerSec',
'PRESSAO ATMOSFERICA REDUZIDA NIVEL DO MAR, AUT(mB)':'hourly_reduced_atm_pressure_sea_level_mB',
'PRESSAO ATMOSFERICA MAX.NA HORA ANT. (AUT)(mB)':'hourly_max_atm_pressure_previous_hour_mB',
'PRESSAO ATMOSFERICA MIN. NA HORA ANT. (AUT)(mB)':'hourly_min_atm_pressure_previous_hour_mB',
'RADIACAO GLOBAL(Kj/m²)':'hourly_global_radiation_kJPerMeterSquared',
'TEMPERATURA DA CPU DA ESTACAO(°C)':'hourly_station_cpu_temperature_celsius',
'TEMPERATURA MAXIMA NA HORA ANT. (AUT)(°C)':'hourly_max_temperature_previous_hour_celsius',
'TEMPERATURA MINIMA NA HORA ANT. (AUT)(°C)':'hourly_min_temperature_previous_hour_celsius',
'TEMPERATURA ORVALHO MAX. NA HORA ANT. (AUT)(°C)':'hourly_max_dew_point_temperature_previous_hour_celsius',
'TEMPERATURA ORVALHO MIN. NA HORA ANT. (AUT)(°C)':'hourly_min_dew_point_temperature_previous_hour_celsius',
'TENSAO DA BATERIA DA ESTACAO(V)':'hourly_station_battery_voltage_Volts',
'UMIDADE REL. MAX. NA HORA ANT. (AUT)(%)':'hourly_max_relative_air_humidity_previous_hour_percent',
'UMIDADE REL. MIN. NA HORA ANT. (AUT)(%)':'hourly_min_relative_air_humidity_previous_hour_percent',
'VENTO, DIRECAO HORARIA (gr)(° (gr))':'hourly_wind_direction_degrees',
'VENTO, RAJADA MAXIMA(m/s)':'hourly_max_wind_gust_metersPerSec'
}
dict_sheet_names = {
'allYearsPerMonth':'Returns the average value for each month, considering the complete data series',
'first10yearsPerMonth':'Returns the average value for each month, considering only the first 10 years of the data series',
'last10yearsPerMonth':'Returns the average value for each month, considering only the last 10 years of the data series',
'allYearPerYear':'Returns the average value for each year, considering the complete data series',
'first10yearsPerYear':'Returns the average value for each year, considering only the first 10 years of the data series',
'last10yearsPerYear':'Returns the average value for each year, considering only the last 10 years of the data series'
}
def create_dataframe(file_path):
df = pd.read_csv(file_path, delimiter=';', skiprows=10)
return df
def get_csv_header_info(file_path):
df_infos = pd.read_csv(file_path, delimiter=';', nrows=9, header=None, names=['station_infos'])
return df_infos
def get_instructions_sheet(dict_columns_names):
df = pd.DataFrame(list(dict_columns_names.items()), columns=['BDMEP_original_variable_name', 'renamed_variable'])
df = df[['renamed_variable','BDMEP_original_variable_name']]
df['__________'] = ''
df_temp = pd.DataFrame(list(dict_sheet_names.items()), columns=['sheet_name','description'])
df['sheet_name'] = df_temp['sheet_name']
df['description'] = df_temp['description']
df.fillna('', inplace=True)
return df
def remove_unnamed_colum(df):
for column in df.columns:
if 'unnamed' in column.lower():
df = df.drop(column, axis=1)
return df
def rename_columns_names(df):
renamed_df_columns_names = []
for column in df.columns:
renamed_df_columns_names.append(dict_columns_names.get(column))
return renamed_df_columns_names
def rename_columns_in_df(df, renamed_df_columns_names):
new_columns = dict(zip(df.columns, renamed_df_columns_names))
df = df.rename(columns=new_columns)
return df
def create_renamed_df():
df = create_dataframe(file_path)
df = remove_unnamed_colum(df)
renamed_df_columns_names = rename_columns_names(df)
df = rename_columns_in_df(df, renamed_df_columns_names)
return df
def get_data_start_date():
df_temp = create_dataframe(file_path)
data_start_date = str(df_temp[df_temp.columns[0]].head(1))
data_start_date = data_start_date.split('-')[0].split(' ')
data_start_date = data_start_date[-1]
return data_start_date # returns string year (example: '2010')
def get_data_final_date():
df_temp = create_dataframe(file_path)
data_final_date = str(df_temp[df_temp.columns[0]].tail(1))
data_final_date = data_final_date.split('-')[0].split(' ')
data_final_date = data_final_date[-1]
return data_final_date # returns string year (example: '2010')
def calculates_average_values_for_period(df):
column_names = df.columns
columns_summed_values = []
columns_counted_values = []
for col_name in column_names:
if ('sum' in col_name):
columns_summed_values.append(col_name)
if ('count' in col_name):
columns_counted_values.append(col_name)
columns_zipped = list(zip(columns_summed_values, columns_counted_values))
for column1, column2 in columns_zipped:
new_column_name = column1.split('_')[0:-1]
new_column_name = '_'.join(new_column_name)
df[new_column_name] = df[column1] / df[column2]
return df
def filters_final_df_columns(df_average_values_calculated):
filtered_df_columns = [column for column in df_average_values_calculated.columns if 'sum' not in column and 'count' not in column]
final_result = df_average_values_calculated.select(*filtered_df_columns)
return final_result
def get_final_result_df():
df = create_renamed_df()
df['date_YYYYMMDD'] = pd.to_datetime(df['date_YYYYMMDD'])
numeric_columns = df.select_dtypes(include=[float, int]).columns
return df, numeric_columns
def get_final_result_file_name():
header_complete_info = get_csv_header_info(file_path)
city_name = header_complete_info.iloc[0][0]
city_name = city_name.split(':')[1].strip().title()
city_name = ''.join(city_name.split(' '))
station_code = header_complete_info.iloc[1][0]
station_code = station_code.split(':')[1].strip()
periodicity = header_complete_info.iloc[8][0]
periodicity = periodicity.split(':')[1].strip().lower()
prefix_file_path = file_path.split('/')
final_result_file_name = '/'.join(prefix_file_path[0:-1]) + f'/{city_name}_station[{station_code}]_periodicity[{periodicity}]'
return final_result_file_name
def save_all_final_result_to_xlsx_file():
final_result_file_name = get_final_result_file_name()
with pd.ExcelWriter(f'{final_result_file_name}.xlsx') as excel_writer: #, engine='openpyxl'
station_infos = get_csv_header_info(file_path)
station_infos.to_excel(excel_writer, sheet_name='stationInfos', index=False)
instructions_sheet = get_instructions_sheet(dict_columns_names)
instructions_sheet.to_excel(excel_writer, sheet_name='instructions', index=False)
# SQL 1
df, numeric_columns = get_final_result_df()
df = sql_complete_series_grouped_by_month(df, numeric_columns)
df.to_excel(excel_writer, sheet_name='allYearsPerMonth', index=False)
# SQL 2
df, numeric_columns = get_final_result_df()
df = sql_first_ten_years_grouped_by_month(df, numeric_columns)
df.to_excel(excel_writer, sheet_name='first10yearsPerMonth', index=False)
#SQL 3
df, numeric_columns = get_final_result_df()
df = sql_last_ten_years_grouped_by_month(df, numeric_columns)
df.to_excel(excel_writer, sheet_name='last10yearsPerMonth', index=False)
#SQL 4
df, numeric_columns = get_final_result_df()
df = sql_complete_series_grouped_by_year(df, numeric_columns)
df.to_excel(excel_writer, sheet_name='allYearsPerYear', index=False)
#SQL5
df, numeric_columns = get_final_result_df()
df = sql_first_ten_years_grouped_by_year(df, numeric_columns)
df.to_excel(excel_writer, sheet_name='first10yearsPerYear', index=False)
#SQL 6
df, numeric_columns = get_final_result_df()
df = sql_last_ten_years_grouped_by_year(df, numeric_columns)
df.to_excel(excel_writer, sheet_name='last10yearsPerYear', index=False)
def main():
def open_link1():
webbrowser.open_new('https://github.com/Luizfelz')
def open_link2():
webbrowser.open_new('https://www.linkedin.com/in/luizfsf/')
def open_link3():
webbrowser.open_new('http://lattes.cnpq.br/2195347611352083')
def browse_file():
global file_path
file_path = filedialog.askopenfilename()
if file_path:
label.config(text='Operation completed! \nResult file saved in the same directory as the csv file!')
save_all_final_result_to_xlsx_file()
app = tk.Tk()
app.title('BDMEP data processing')
app.geometry('500x250')
instruction_text = 'Select the CSV file using the "BROWSE" button below.'
instruction_label = tk.Label(app, text=instruction_text, justify='center', font=('Helvetica', 14))
instruction_label.pack(pady=(20, 10))
browse_button = tk.Button(app, text='BROWSE', command=browse_file, bg='#E0E0E0', font=('Helvetica', 12, 'bold'))
browse_button.pack(pady=20)
label = tk.Label(app, text='', font=('Helvetica', 14))
label.pack()
link_frame = tk.Frame(app)
link_frame.pack(pady=20)
made_by_label = tk.Label(link_frame, text='Made by Luiz Fonseca: ', font=('Helvetica', 10, 'bold'))
made_by_label.pack(side='left', padx=5)
link1_button = tk.Button(link_frame, text='GitHub', command=open_link1, bg='#838383', font=('Helvetica', 10, 'bold'))
link1_button.pack(side='left', padx=5)
link2_button = tk.Button(link_frame, text='Linkedin', command=open_link2, bg='#838383', font=('Helvetica', 10, 'bold'))
link2_button.pack(side='left', padx=5)
link3_button = tk.Button(link_frame, text='Lattes', command=open_link3, bg='#838383', font=('Helvetica', 10, 'bold'))
link3_button.pack(side='left', padx=5)
app.mainloop()
def sql_complete_series_grouped_by_month(df, numeric_columns):
df['month'] = df['date_YYYYMMDD'].dt.strftime('%b')
for col in numeric_columns:
df[f'{col}_sum'] = df.groupby(['month'])[col].transform('sum')
df[f'{col}_count'] = df.groupby(['month'])[col].transform('count')
df = calculates_average_values_for_period(df)
df = df.drop_duplicates(subset=['month'])
df = df.filter(regex=f'^(?:(?!.*_sum)(?!.*_count).*$)')
df = df.drop('date_YYYYMMDD', axis=1)
df = df[['month'] + [col for col in df.columns if col != 'month']]
df = df.reset_index(drop=True)
return df
def sql_first_ten_years_grouped_by_month(df, numeric_columns):
data_start_date = get_data_start_date()
data_start_date = datetime.strptime(data_start_date, '%Y').date()
data_first_ten_years = str(data_start_date + relativedelta(years=10))
data_first_ten_years = int(data_first_ten_years.split('-')[0])
df['month'] = df['date_YYYYMMDD'].dt.strftime('%b')
df['year'] = df['date_YYYYMMDD'].dt.year
df = df[df['year'] < data_first_ten_years]
for col in numeric_columns:
df[f'{col}_sum'] = df.groupby(['month'])[col].transform('sum')
df[f'{col}_count'] = df.groupby(['month'])[col].transform('count')
df = calculates_average_values_for_period(df)
df = df.drop_duplicates(subset=['month'])
df = df.filter(regex=f'^(?:(?!.*_sum)(?!.*_count).*$)')
df = df.drop(['date_YYYYMMDD', 'year'], axis=1)
df = df[['month'] + [col for col in df.columns if col != 'month']]
df = df.reset_index(drop=True)
return df
def sql_last_ten_years_grouped_by_month(df, numeric_columns):
data_final_date = get_data_final_date()
data_final_date = datetime.strptime(data_final_date, '%Y').date()
data_last_ten_years = str(data_final_date - relativedelta(years=10))
data_last_ten_years = int(data_last_ten_years.split('-')[0])
df['month'] = df['date_YYYYMMDD'].dt.strftime('%b')
df['year'] = df['date_YYYYMMDD'].dt.year
df = df[df['year'] > data_last_ten_years]
for col in numeric_columns:
df[f'{col}_sum'] = df.groupby(['month'])[col].transform('sum')
df[f'{col}_count'] = df.groupby(['month'])[col].transform('count')
df = calculates_average_values_for_period(df)
df = df.drop_duplicates(subset=['month'])
df = df.filter(regex=f'^(?:(?!.*_sum)(?!.*_count).*$)')
df = df.drop(['date_YYYYMMDD', 'year'], axis=1)
df = df[['month'] + [col for col in df.columns if col != 'month']]
df = df.reset_index(drop=True)
return df
def sql_complete_series_grouped_by_year(df, numeric_columns):
df['year'] = df['date_YYYYMMDD'].dt.year
for col in numeric_columns:
df[f'{col}_sum'] = df.groupby(['year'])[col].transform('sum')
df[f'{col}_count'] = df.groupby(['year'])[col].transform('count')
df = calculates_average_values_for_period(df)
df = df.drop_duplicates(subset=['year'])
df = df.filter(regex=f'^(?:(?!.*_sum)(?!.*_count).*$)')
df = df.drop('date_YYYYMMDD', axis=1)
df = df[['year'] + [col for col in df.columns if col != 'year']]
df = df.reset_index(drop=True)
return df
def sql_first_ten_years_grouped_by_year(df, numeric_columns):
data_start_date = get_data_start_date()
data_start_date = datetime.strptime(data_start_date, '%Y').date()
data_first_ten_years = str(data_start_date + relativedelta(years=10))
data_first_ten_years = int(data_first_ten_years.split('-')[0])
df['year'] = df['date_YYYYMMDD'].dt.year
df = df[df['year'] < data_first_ten_years]
for col in numeric_columns:
df[f'{col}_sum'] = df.groupby(['year'])[col].transform('sum')
df[f'{col}_count'] = df.groupby(['year'])[col].transform('count')
df = calculates_average_values_for_period(df)
df = df.drop_duplicates(subset=['year'])
df = df.filter(regex=f'^(?:(?!.*_sum)(?!.*_count).*$)')
df = df.drop('date_YYYYMMDD', axis=1)
df = df[['year'] + [col for col in df.columns if col != 'year']]
df = df.reset_index(drop=True)
return df
def sql_last_ten_years_grouped_by_year(df, numeric_columns):
data_final_date = get_data_final_date()
data_final_date = datetime.strptime(data_final_date, '%Y').date()
data_last_ten_years = str(data_final_date - relativedelta(years=10))
data_last_ten_years = int(data_last_ten_years.split('-')[0])
df['year'] = df['date_YYYYMMDD'].dt.year
df = df[df['year'] > data_last_ten_years]
for col in numeric_columns:
df[f'{col}_sum'] = df.groupby(['year'])[col].transform('sum')
df[f'{col}_count'] = df.groupby(['year'])[col].transform('count')
df = calculates_average_values_for_period(df)
df = df.drop_duplicates(subset=['year'])
df = df.filter(regex=f'^(?:(?!.*_sum)(?!.*_count).*$)')
df = df.drop('date_YYYYMMDD', axis=1)
df = df[['year'] + [col for col in df.columns if col != 'year']]
df = df.reset_index(drop=True)
return df
main()