-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparameters.py
480 lines (395 loc) · 18.7 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import numpy as np
import math
from collections import namedtuple
#################################
# functions
#################################
def iwc_to_Pa(h20):
'''
Inches water column -> Pa
'''
return h20*248.8
def cfm_to_m3s(v):
'''
Cubic ft/min -> m3/s
'''
return v/2119
# fuel density (kg/m^3) ORNL-1845 pg. 113
def fuel_density(temp):
return 1000*(4.04-0.0011*(temp+273.15))
# F to K conversion
def F_to_K(tempF):
return (tempF-32)*5/9+273.15
def mass_flow(m,P,V,T):
'''
m: molar mass of gas
P: pressure
V: volume
T: temperature
'''
return m*P*V/(R*T) # helium mass flow (kg/s)
def h_US(C,k,D,R,r,Pr,p):
'''
convective heat transfer coefficient BTU/(sec*ft^2*degF) ORNL-1535 p.15
C: leading coefficient
k: thermal conductivity BTU/(sec*ft^2)
D: pipe diameter (ft)
R: Reynold's modulus
r: Exponent for Reynold's modulus
Pr: Prandtl modulus
p: Exponent for Prandtl modulus
'''
return 0.023*(k/D)*(R**0.8)*(Pr**0.4)
def R_US(u,r,nu):
'''
Reynold's Modulus ORNL-1345 p.7
u: fluid velocity (ft/hr)
r: pipe radius (ft)
nu: kinematic viscosity (ft^2/hr)
'''
return 2*u*r/nu
def Pr_US(nu,rho,c,k):
'''
Prandtl Modulus ORNL-1345 p.7
nu: kinematic viscosity (ft^2/hr)
rho: density (lb/ft^3)
c: heat capacity (Btu/(lb*degF))
k: thermal conductivity BTU/(hr*ft^2)
'''
return nu*rho*c/k
Point = namedtuple('Point', ['x', 'y'])
def hA(W,points):
'''
Quadratic approximation of convective heat transfer coefficient,
given available data
W: flow rate (lb/s)
points: data points of (flow rate (lb/s),hA)
returns hA in BTU/(sec*degF)
'''
# Create matrices for the system of equations
order = len(points)
a = [[p.x**i for i in reversed(range(order))] for p in points]
A = np.array(a)
b = np.array([p.y for p in points])
# Solve for the coefficients
coeffs = np.linalg.solve(A, b)
# evaluate terms
terms = [coeffs[i]*W**(order-i) for i in range(order)]
return sum(terms)
###############################################################################
# constants
###############################################################################
# domain
t0 = 0.0
tf = 2000.00
T = np.arange(t0,tf,0.01)
# reactivity insertion
insert_duration = 0.4/0.011 # ORNL-1845
t_ins = 300.00
t_wd = t_ins + (60*4)
# dimensions
pi = math.pi
R = 8.314 # ideal gas constant
m_H = 0.004 # molar mass of helium (kg/mol)
P = 2.12 # experiment H-8/H-12, one dollar reactivity insertion, 25hr Xenon run, ORNL-1845 p. 186
# density
rho_inconel = 8.5*1000 # inconel density (kg/m^3)
rho_h = 0.167 # helium density (kg/m^3) NEEDS TO BE TEMPERATURE DEPENDENT
rho_m = 2.75*1000 # BeO density (kg/m^3) ORNL-1845 p.
# specific heat capacities
#scp_f = 1.9665e-3 # specific heat capacity of fuel salt (BTU/lb*defF) -> (MJ/kg-C) ORNL-TM-0728 p.8
scp_t = 0.101*4.1869e-3 # specific heat capacity of inconel 600 (BTU/lb*defF) -> (MJ/kg-C) ORNL-1845 p.113
scp_f = (0.26*4.1869e-3) # specific heat capacity of fuel salt ORNL-1845 p.113 (BTU/lb*defF) -> (MJ/kg-C)
scp_c = 0.3*4.1869e-3 # specific heat capacity of cooolant (BTU/lb*defF) -> (MJ/kg-C) ORNL-1845 p.113
scp_h = 1.248*4.1869e-3 # specigic heat capacity of helium (BTU/lb*defF) -> (MJ/kg-C) ORNL-1845 p.113
scp_m = 0.48*4.1869e-3 # specific heat capcity of moderator (BTU/lb*defF) -> (MJ/kg-C) ORNL-1845 p.113
# delays
tau_l = 47.0 # ORNL-1845 p. 93
tau_c = 8.3 # ORNL-1845 p.120
tau_hx_c_f = tau_l/2 # fuel-helium hx to core delay
tau_hx_c_c = tau_l/2 # coolant-helium hx to core delay (unknown, assumed same as fuel)
tau_c_hx_f = tau_l/2 # core->hx delay
tau_h = 0.5 # helium loop delay (unknown)
# NEUTRONICS DATA, borrowed from MSRE model
#tau_l = 5.00 # ORNL-TM-0728 %16.44; % (s)
#tau_c = 8.3 # ORNL-1845 p.120
n_frac0 = 1.0 # initial fractional neutron density n/n0 (n/cm^3/s)
# Lam = 2.400E-04 # mean generation time ORNL-TM-1070 p.15 U235
Lam = (2.400E-04) # mean generation time ORNL-TM-1070 p.15 U235
# Lam = 4.0E-04; # mean generation time ORNL-TM-1070 p.15 U233
lam = np.array([1.240E-02, 3.05E-02, 1.11E-01, 3.01E-01, 1.140E+00, 3.014E+00])
beta = (np.array([0.000223, 0.001457, 0.001307, 0.002628, 0.000766, 0.00023])) # U235
# beta = np.array([0.00023, 0.00079, 0.00067, 0.00073, 0.00013, 0.00009]) # U233
beta_t = np.sum(beta) # total delayed neutron fraction MSRE
# ARE
beta_fracs = beta/beta_t
beta_t = 0.0047 # ORNL-1845 pg. 150
beta = np.array([beta_fracs[i]*beta_t for i in range(len(beta))])
rho_0 = beta_t-sum(np.divide(beta,1+np.divide(1-np.exp(-lam*tau_l),lam*tau_c))) # reactivity change in going from stationary to circulating fuel
C0 = beta / Lam * (1.0 / (lam - (np.exp(-lam * tau_l) - 1.0) / tau_c))
###############################################################################
# core
###############################################################################
# wights (borrowed from MSRE model)
k_f1 = 0.475 # fractional power generation (fuel)
k_f2 = 0.475 # fractional power generation (fuel)
k_m = 1-(k_f1+k_f2) # fractional power generation (beryllium)
k_1 = 0.5
k_2 = 1-k_1
# thermal feedback (1/Kelvin, temperature provided in Kelvin) ORNL-1845 pg. 115
a_f = (-9.8e-5)*9/5
a_b = (1.1e-5)*9/5
a_c = (-5.88e-5)*9/5
# operating conditions taken from 25-hr Xenon run Exp. H-8
# temperatures
T_fuel_avg = F_to_K(1311) # ORNL 1845 pg. 58
T0_c_f1 = F_to_K(1209) # core fuel inlet temp (K) ORNL-1845 pg. 120
T0_c_f2 = F_to_K(1522) # core fuel outlet temp (K) ORNL-1845 pg. 120
T0_c_c1 = F_to_K(1226) # core coolant inlet temp (K) ORNL-1845 pg. 121
T0_c_c2 = F_to_K(1335) # core coolant outlet temp (K) ORNL-1845 pg. 121
T0_c_t1 = ((T0_c_f1+T0_c_c1)/2) # core tube temp
T0_c_m = F_to_K(1300) # beryllium initial temp
# flow rates
F_c_f = 46/15850 # core fuel flow rate (gal/min)->(m^3/s) ORNL-1845 pg. 120
F_c_c = 150/15850 # core coolant flow rate (gal/min)->(m^3/s) ORNL-1845 pg. 120
# dimensions
V_fuel = 52071.248849/1e6 # CAD model (cm^3)->(m^3)
A_fuel = (69872.856584/2-(6*6.996))/10000 # CAD model (cm^3)->(m^2)
V_tubes = (5453.961+34777.657)/1e6 # CAD model (cm^3)->(m^3)
A_tubes = (73445.338-(12*7.728))/10000 # CAD model (cm^3)->(m^2)
A_tube_bends = 2*(20044.557-(62*pi*(3.137/2)**2))/10000 # CAD model (cm^2)->(m^2)
V_coolant = (248933.207)/1e6 # CAD model (cm^3)->(m^3)
A_mc = 961677.131/10000 # CAD model (cm^2)->(m^2)
V_m = 926899.473/1e6 # CAD model (cm^2)->(m^3)
# density
# rho_c = 1000*0.78 # coolant density (kg/m^3)
# density data from https://apps.dtic.mil/sti/tr/pdf/AD0622191.pdf
temperature = np.array([F_to_K(t) for t in [1576.8, 1886.2, 2093.5, 2268.9, 2491.2]])
density = np.array([16.0186*r for r in [46.738, 43.926, 42.224, 40.641, 38.933]]) # lb/ft^3 -> kg/m^3
# line of best fit
coefficients = np.polyfit(temperature, density, 1)
slope, intercept = coefficients
def coolant_density(T_c):
return T_c*slope + intercept
rho_c = coolant_density(F_to_K(1280)) # worked backwards for agreement with extracted power ORNL-1845 pg. 120
rho_f = fuel_density(F_to_K(1130)) # worked backwards for agreement with extracted power ORNL-1845 pg. 120
# mass
m_f_c = rho_f*V_fuel
m_c_c = rho_c*V_coolant # coolant mass (kg)
m_m_c = (5490/2.205) # ORNL-1845 p.111s (lb)->(kg)
m_t = V_tubes*rho_inconel # mass of tubes (kg)
# mass flow rate
# W_f = F_c_f * fuel_density(T_fuel_avg) # fuel mass flow rate (kg/s)
W_f = F_c_f * rho_f # fuel mass flow rate (kg/s)
W_c = F_c_c * rho_c # coolant mass flow rate (kg/s)
# convective heat transfer coefficient for the core fuel
rho_c_f = rho_f # core fuel density in (lb/ft^3) ORNL-1535 p.16
cp_c_f = 0.26 # core fuel heat capacity (Btu/(lb*degF)) ORNL-1535 p.16
mu_c_f = 60*60*8.27e-3 # absolute viscosity of core fuel lb/(hr*ft) ORNL-1535 p.16
nu_c_f = mu_c_f/rho_c_f # kinematic viscosity (ft^2/hr)
d_c_f = 0.097933071 # fuel pipe diameter (ft) CAD Model
v_c_f = (40*8.02083)/(pi*(d_c_f/2)**2) # velocity of core fuel (ft/hr) (gpm->ft^3/hr conversion)
k_f_US = 4.17e-4 # thermal conductivity of the fuel in BTU/(sec*ft^2) ORNL-1535 p.16
k_f_US_hr = 60*60*4.17e-4 # thermal conductivity of the fuel in BTU/(hr*ft^2) ORNL-1535 p.16
R_c_f = R_US(v_c_f,d_c_f/2,nu_c_f) # Reynold's number for core fuel
r_c_f = 0.8 # coefficient on Reynold's modulus
Pr_c_f = Pr_US(nu_c_f,rho_c_f,cp_c_f,k_f_US_hr) # Prandtl modulus core fuel
p_c_f = 0.4 # Coefficient on Prandtl's modulus
C_c_f = 0.023 # leading coefficient
h_f_US = h_US(C_c_f,k_f_US,d_c_f,R_c_f,r_c_f,Pr_c_f,p_c_f) # Convective heat transfer coefficient core fuel (BTU/(sec*ft^2*degF))
h_f_US_hr = h_f_US*60*60 # Convective heat transfer coefficient core fuel (BTU/(hr*ft^2*degF))
h_f_c = ((h_f_US_hr/0.1761)*1e-6) # Convective heat transfer coefficient core fuel (MW/(m^2*degC))
hA_f_c = h_f_c*A_fuel
# convective heat transfer coefficient for the core tubes
hA_t_hx_US = 1/0.137 # BTU/(sec*degF) ORNL-1535 p. 47
h_t_US = (hA_t_hx_US/11.15+hA_t_hx_US/8.02)/2 # tube htc (Btu/(sec*ft^2*defF))
hA_t_c_US = h_t_US*A_fuel*10.764
hA_t_c = hA_t_c_US*(9/5)*(1.05504)*(1e-3) # MW/(degK)
# fuel-tube coefficient (core)
hA_ft_c = 1/((1/hA_t_c)+(1/hA_f_c))
# coolant
A_coolant_tubes_US = 317085/929 # CAD model (cm^2)->(ft^2)
h_c_c_US = 166 # coolant heat transfer coefficient (BTU/(hr*ft^2*defF)) ORNL-1535 p.23
hA_c_c_US = A_coolant_tubes_US*h_c_c_US
# elbows
hA_t_c12_US = 1/(0.130) # ORNL-1535 pg.24
hA_tc_c_US = 1/((1/hA_c_c_US)+(1/hA_t_c12_US))
hA_tc_c = hA_tc_c_US*(9/5)*(1.05504)*(1e-3) # MW/(degK)
# moderator
hA_m_US = 1/2.060 # ORNL-1535 p.28
hA_c_US = 1000*1/0.771 # ORNL-1535 p.28
hA_mc_US = 1/((1/hA_m_US)+(1/hA_c_US))
hA_mc_c = hA_mc_US*(9/5)*(1.05504)*(1e-3) # MW/(degK)
# specific heat
mcp_t_c = scp_t*m_t
mcp_f_c = scp_f*m_f_c
mcp_c_c = scp_c*m_c_c
mcp_m_c = scp_m*m_m_c
# hA_ft_c = (1/0.503)*(9/5)*(1.05504)*(1e-3)
# hA_tc_c = hA_ft_c
###############################################################################
# fuel-helium heat exchanger
###############################################################################
# initial temperatures
T0_hfh_f1 = F_to_K(1522) # fuel-helium hx fuel inlet temp (K) ORNL-1845 pg. 121
T0_hfh_f2 = F_to_K(1209) # fuel-helium hx fuel oulet temp (K) ORNL-1845 pg. 121
T0_hfh_h1 = F_to_K(180) # fuel-helium hx helium inlet temp (K) ORNL-1845 pg. 121
T0_hfh_h2 = F_to_K(620) # fuel-helium hx helium outlet temp (K) ORNL-1845 pg. 121
T0_hfh_t1 = ((T0_hfh_f1+T0_hfh_h1)/2) # initial tube temp
# flow rates
F_hfh_h1 = (7300)/2119 # fuel-helium hx helium fuel inlet flow rate (ft^3/min)->(m^3/s) ORNL-1845 pg. 121
F_hfh_h2 = (12300)/2119 # fuel-helium hx helium fuel outlet flow rate (ft^3/min)->(m^3/s) ORNL-1845 pg. 121
# dimensions
L_eff_US = 93.65*12 # effective tube length of hx (in) ORNL-1535 pg. 47
V_p_hx_US = (math.pi*((1.0/2)-0.109)**2)*L_eff_US # volume in hx tubes (in^3) ORNL-1535 pg. 47
V_p_hx = V_p_hx_US/61020 # in^3 -> m^3
V_t_hx_US = ((L_eff_US)*math.pi*((1.0/2))**2 - V_p_hx_US) # tube volume in heat exchangers (in^3)
V_t_hx = V_t_hx_US/61020 # in^3 -> m^3
A_t_hx = (pi*((1.0)-2*0.109)*L_eff_US)/144 # hx inner tube area (in^2 -> ft^2) ORNL-1535 p.47
A_to_hx = (pi*(1.0/2)*93.65*12)/144 # hx outer tube area (in^2 -> ft^2) ORNL-1535 p.47
# mass
m_f_hx = V_p_hx*fuel_density(T_fuel_avg)
m_h_hxfh = (((27.0*27.5*27)/61020)-V_t_hx-V_p_hx)*rho_h # hx volume minus tube volume
m_t_hxfh = V_t_hx*rho_inconel
# heat transfer fuel<->tube
hA_f_hx_US = 5.724 # BTU/(sec*degF) ORNL-1535 p.47
hA_t_hx_US = 1/0.137 # BTU/(sec*degF) ORNL-1535 p.47
hA_ft_hx_US = 1/((1/hA_f_hx_US)+(1/hA_t_hx_US))
hA_ft_hx = hA_ft_hx_US*(9/5)*(1.05504)*(1e-3) # BTU/(sec*degF) -> (MW/C)
# mass flow rate of helium
W_h_fh = F_hfh_h1*(0.1362) # (kg/s) = volumetric flow rate * denisty of helium at 180F, 2.2 H20, 7300 cfm ORNL-1845 p.122
W_h_fh_US = W_h_fh*2.205 # (lb/s)
# available coefficient data for helium ORNL-1535 p.47
fh_p1 = Point(0.5,0.58)
fh_p2 = Point(1.0,0.8)
fh_p3 = Point(1.5,0.955)
hA_h_hx_US = hA(W_h_fh_US,[fh_p1,fh_p2,fh_p3])
hA_ht_hx_US = 1/((1/hA_h_hx_US)+(1/hA_t_hx_US))
hA_ht_hx = hA_ht_hx_US*(9/5)*(1.05504)*(1e-3) # BTU/(sec*degF) -> (MW/C)
# product of mass and specific heat capacities
mcp_t_hx = m_t_hxfh*scp_t
mcp_f_hx = scp_f*m_f_hx
mcp_h_hxfh = m_h_hxfh*scp_h
###############################################################################
# helium-water heat exchanger (fuel loop)
###############################################################################
# initial temperatures
T0_hhwf_h1 = F_to_K(620) # helium-water hx (fuel loop) helium inlet temp (K) ORNL-1845 pg. 121
T0_hhwf_h2 = F_to_K(180) # helium-water hx (fuel loop) helium outlet temp (K) ORNL-1845 pg. 121
T0_hhwf_w1 = F_to_K(61) # helium-water hx (fuel loop) water inlet temp (K) ORNL-1845 pg. 121
T0_hhwf_w2 = F_to_K(124) # helium-water hx (fuel loop) water water outlet temp (K) ORNL-1845 pg. 121
T0_hhwf_t1 = ((T0_hhwf_h1+T0_hhwf_w1)/2)
V_h_hxhw_US = (pi*((0.625/2)-0.049)**2)*825*12 # in^3 ORNL-1535 p.47
V_h_hxhw = V_h_hxhw_US/61020 # m^3
m_h_hxhwf = V_h_hxhw*rho_h
V_t_hxhw_US = ((pi*((0.625/2))**2)*825*12)-V_h_hxhw_US
V_t_hxhw = V_t_hxhw_US/61020 # m^3
m_t_hxhwf = rho_inconel*V_t_hxhw
mcp_t_hxhw = m_t_hxhwf*scp_t
# water mass flow rate
W_hhwf_w = 998*((103*2)/15850) # water flow (kg/s) ORNL-1845 p.121
W_hhwf_w_US = W_hhwf_w*2.205 # (lb/s)
V_w_US = (27*27.5*27)-V_t_hx_US-V_h_hxhw_US # in^3
V_w = V_w_US/61020 # in^3 -> m^3
m_w_hxhwf = V_w*998
scp_w = 4.181e-3
mcp_w = m_w_hxhwf*scp_w
mcp_h_hxhw = m_h_hxhwf*scp_h
# helium<->tube
hxhw_h_p1 = Point(0.5,1.40)
hxhw_h_p2 = Point(1.0,2.37)
hxhw_h_p3 = Point(1.5,3.22)
hA_h_hxhw_US = hA(W_h_fh_US,[hxhw_h_p1,hxhw_h_p2,hxhw_h_p3])
hA_t_hxhw_US = 1/0.00456 # BTU/(sec*degF) # ORNL-1535 p.47
hA_ht_hxhw_US = 1/((1/hA_h_hxhw_US)+(1/hA_t_hxhw_US))
hA_ht_hxhw = hA_ht_hxhw_US*(9/5)*(1.05504)*(1e-3) # BTU/(sec*degF) -> MW/C
# tube<->water
hxhw_w_p1 = Point(3.54,12.5)
hxhw_w_p2 = Point(7.08,22.8)
hxhw_w_p3 = Point(10.61,30.8)
hA_w_hxhw_US = hA(W_hhwf_w_US,[hxhw_w_p1,hxhw_w_p2,hxhw_w_p3])
hA_tw_hxhw_US = 1/((1/hA_t_hxhw_US)+(1/hA_w_hxhw_US))
hA_tw_hxhw = hA_tw_hxhw_US*(9/5)*(1.05504)*(1e-3) # BTU/(sec*degF) -> MW/C
###############################################################################
# coolant-helium heat exchanger
###############################################################################
# initial temperatures
T0_hch_c1 = F_to_K(1335) # coolant-helium hx coolant inlet temp (K) ORNL-1845 pg. 121
T0_hch_c2 = F_to_K(1226) # coolant-helium hx coolant outlet temp (K) ORNL-1845 pg. 121
T0_hch_h1 = F_to_K(170) # coolant-helium hx helium inlet temp (K) ORNL-1845 pg. 122
T0_hch_h2 = F_to_K(1020) # coolant-helium hx helium outlet temp (K) ORNL-1845 pg. 122
T0_hch_t1 = ((T0_hch_c1+T0_hch_h1)/2)
# dimensions
V_c_hxch_US = 101.6*12*pi*((1.0/2)-0.109)**2 # (in^3) ORNL-1535 p.58
V_c_hxch = V_c_hxch_US/61020 # (in^3) -> (m^3)
V_t_hxch_US = (101.6*12*pi*((1.0/2))**2)-V_c_hxch_US # (in^3) ORNL-1535 p.58
V_t_hxch = V_t_hxch_US/61020 # (in^3) -> (m^3)
V_h_hxch_US = (16.25**2)*13.75 # (in^3) ORNL-1535 p.58
V_h_hxch = V_h_hxch_US/61020 # (in^3) -> (m^3)
# mass
m_c_hx = V_c_hxch * rho_c
m_t_hxch = V_t_hxch*rho_inconel
m_h_hxch = rho_h*V_h_hxch
# product of mass and specific heat capacity
mcp_c_hxch = m_c_hx*scp_c
mcp_h_hxch = m_h_hxch*scp_h
mcp_t_hxch = m_t_hxch*scp_t
# helium mass flow rate
F_h_ch = 2000/2119 # ft^3/min->m^3/s ORNL-1845 p.122
W_h_ch = F_h_ch*0.1389 # volumetric flow rate * denisty of helium at 170F, 4.0 H20 ORNL-1845 p.122
W_hxch_h_US = W_h_ch*2.205 # (kg/s)->(lb/s)
# coolant<->tube
hA_c_hx_US = 17.3 # (BTU/(sec*degF)) ORNL-1535 p.58
hA_t_hxch_US = 1/0.126 # (BTU/(sec*degF)) ORNL-1535 p.58
hA_ct_US_hx = 1/((1/hA_c_hx_US)+(1/hA_t_hxch_US)) # BTU/(sec*degF)
hA_ct_hx = hA_ct_US_hx*(9/5)*(1.05504)*(1e-3) # MW/C
# tube<->helium
hxch_h_p1 = Point(0.11,0.526)
hxch_h_p2 = Point(0.22,0.743)
hxch_h_p3 = Point(0.33,0.889)
hA_h_hxch_US = hA(W_hxch_h_US,[hxch_h_p1,hxch_h_p2,hxch_h_p3])
hA_th_hxch_US = 1/((1/hA_h_hxch_US)+(1/hA_t_hxch_US))
hA_th_hxch = hA_th_hxch_US*(9/5)*(1.05504)*(1e-3) # BTU/(sec*degF) -> MW/C
###############################################################################
# helium-water heat exchanger (coolant loop)
###############################################################################
# initial temperatures
T0_hhwc_h1 = F_to_K(1020) # helium-water hx (coolant loop) helium inlet temp (K) ORNL-1845 pg. 122
T0_hhwc_h2 = F_to_K(170) # helium-water hx (coolant loop) helium outlet temp (K) ORNL-1845 pg. 122
T0_hhwc_w1 = F_to_K(61) # helium-water hx (coolant loop) water inlet temp (K) ORNL-1845 pg. 121
T0_hhwc_w2 = F_to_K(114) # helium-water hx (coolant loop) water water outlet temp (K) ORNL-1845 pg. 121
T0_hhwc_t1 = ((T0_hhwc_h1+T0_hhwc_w1)/2)
# dimensions
V_h_hxhwc_US = (pi*((0.625/2)-0.049)**2)*255.1*12 # in^3 ORNL-1535 p.58
V_h_hxhwc = V_h_hxhwc_US/61020 # (in^3) -> (m^3)
V_t_hxhwc_US = ((pi*((0.625/2))**2)*255.1*12)-V_h_hxhwc_US # in^3 ORNL-1535 p.58
V_t_hxhwc = V_t_hxhwc_US/61020 # (in^3) -> (m^3)
V_w_hxhwc_US = (17**3)-V_t_hxhwc_US-V_h_hxhwc_US # (in^3) ORNL-1535 p.58
V_w_hxhwc = V_w_hxhwc_US/61020 # (in^3) -> (m^3)
# mass
m_h_hxhwc = rho_h*V_h_hxhwc
m_t_hxhwc = V_t_hxhwc*rho_inconel
m_w_hxhwc = V_w_hxhwc*998
# product of mass and specific heat capacity
mcp_h_hxhwc = m_h_hxhwc*scp_h
mcp_t_hxhwc = m_t_hxhwc*scp_t
mcp_w_hxhwc = m_w_hxhwc*scp_w
# tube<->helium
hxhwc_h_p1 = Point(0.11,0.424)
hxhwc_h_p2 = Point(0.22,0.709)
hxhwc_h_p3 = Point(0.33,0.957)
hA_h_hxhwc_US = hA(W_hxch_h_US,[hxhwc_h_p1,hxhwc_h_p2,hxhwc_h_p3])
hA_t_hxhwc_US = 1/0.015 # ORNL-1535 p.58
hA_ht_hxhwc_US = 1/((1/hA_h_hxhwc_US)+(1/hA_t_hxhwc_US))
hA_ht_hxhwc = hA_ht_hxhwc_US*(9/5)*(1.05504)*(1e-3) # BTU/(sec*degF) -> MW/C
# mass flow
W_hhwc_w = 998*((38.3*2)/15850) # water flow rate in helium-water hx (kg/s) ORNL-1845 p.122
W_hhwc_w_US = W_hhwc_w*2.205 # (kg/s)->(lb/s)
# tube<->water
hxhwc_w_p1 = Point(3.33,5.92)
hxhwc_w_p2 = Point(6.67,10.2)
hxhwc_w_p3 = Point(10.0,14.3)
hxhwc_w_p4 = Point(16.67,21.5)
hA_w_hxhwc_US = hA(W_hhwc_w_US,[hxhwc_w_p1,hxhwc_w_p2,hxhwc_w_p3,hxhwc_w_p4])
hA_tw_hxhwc_US = 1/((1/hA_t_hxhwc_US)+(1/hA_w_hxhwc_US))
hA_tw_hxhwc = hA_tw_hxhwc_US*(9/5)*(1.05504)*(1e-3) # BTU/(sec*degF) -> MW/C