-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_engine.py
449 lines (407 loc) · 20.4 KB
/
train_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# Copyright (c) Ruopeng Gao. All Rights Reserved.
# ------------------------------------------------------------------------
import os
import torch
import wandb
import torch.nn as nn
import torch.distributed
from einops import rearrange
from structures.instances import Instances
from torch.utils.data import DataLoader
from models import build_model
from models.motip import MOTIP
from models.utils import save_checkpoint, load_checkpoint, load_detr_pretrain, get_model
from models.criterion import build as build_id_criterion
from data import build_dataset, build_sampler, build_dataloader
from utils.utils import labels_to_one_hot, is_distributed, distributed_rank, \
combine_detr_outputs, detr_outputs_index_select, infos_to_detr_targets, batch_iterator, is_main_process
from utils.nested_tensor import nested_tensor_index_select
from torch.optim import AdamW
from torch.optim.lr_scheduler import MultiStepLR
from log.logger import Logger, ProgressLogger
from log.log import Metrics, TPS
from eval_engine import evaluate_one_epoch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
def train(config: dict, logger: Logger):
# Dataset:
dataset_train = build_dataset(config=config)
# Model
model = build_model(config=config)
if config["DETR_PRETRAIN"] is not None:
load_detr_pretrain(model=model, pretrain_path=config["DETR_PRETRAIN"], num_classes=config["NUM_CLASSES"])
logger.print(f"Load DETR pretrain model from {config['DETR_PRETRAIN']}.")
else:
logger.print("No pre-trained detr used.")
# For optimizer:
param_groups = get_param_groups(model=model, config=config)
optimizer = AdamW(params=param_groups, lr=config["LR"], weight_decay=config["WEIGHT_DECAY"])
# Criterion (Loss Function):
id_criterion = build_id_criterion(config=config)
# Scheduler:
if config["SCHEDULER_TYPE"] == "MultiStep":
scheduler = MultiStepLR(optimizer, milestones=config["SCHEDULER_MILESTONES"],
gamma=config["SCHEDULER_GAMMA"])
else:
raise RuntimeError(f"Do not support scheduler type {config['SCHEDULER_TYPE']}.")
# Train States:
train_states = {
"start_epoch": 0,
"global_iter": 0
}
# For resume:
if config["RESUME_MODEL"] is not None: # need to resume from checkpoint
load_checkpoint(
model=model,
path=config["RESUME_MODEL"],
optimizer=optimizer if config["RESUME_OPTIMIZER"] else None,
scheduler=scheduler if config["RESUME_SCHEDULER"] else None,
states=train_states if config["RESUME_STATES"] else None
)
# Different processing on scheduler:
if config["RESUME_SCHEDULER"]:
scheduler.step()
else:
for i in range(0, train_states["start_epoch"]):
scheduler.step()
logger.print(f"Resume from model {config['RESUME_MODEL']}. "
f"Optimizer={config['RESUME_OPTIMIZER']}, Scheduler={config['RESUME_SCHEDULER']}, "
f"States={config['RESUME_STATES']}")
logger.save_log_to_file(f"Resume from model {config['RESUME_MODEL']}. "
f"Optimizer={config['RESUME_OPTIMIZER']}, Scheduler={config['RESUME_SCHEDULER']}, "
f"States={config['RESUME_STATES']}", mode="a")
# Distributed, every gpu will share the same parameters.
if is_distributed():
model = DDP(model, device_ids=[distributed_rank()])
for epoch in range(train_states["start_epoch"], config["EPOCHS"]):
epoch_start_timestamp = TPS.timestamp()
dataset_train.set_epoch(epoch)
sampler_train = build_sampler(dataset=dataset_train, shuffle=True)
dataloader_train = build_dataloader(
dataset=dataset_train,
sampler=sampler_train,
batch_size=config["BATCH_SIZE"],
num_workers=config["NUM_WORKERS"]
)
if is_distributed():
sampler_train.set_epoch(epoch)
# Train one epoch:
train_metrics = train_one_epoch(
config=config, model=model, logger=logger,
dataloader=dataloader_train, id_criterion=id_criterion,
optimizer=optimizer, epoch=epoch, states=train_states,
clip_max_norm=config["CLIP_MAX_NORM"], detr_num_train_frames=config["DETR_NUM_TRAIN_FRAMES"],
detr_checkpoint_frames=config["DETR_CHECKPOINT_FRAMES"],
lr_warmup_epochs=0 if "LR_WARMUP_EPOCHS" not in config else config["LR_WARMUP_EPOCHS"]
)
lr = optimizer.state_dict()["param_groups"][-1]["lr"]
train_metrics["learning_rate"].update(lr)
train_metrics["learning_rate"].sync()
time_per_epoch = TPS.format(TPS.timestamp() - epoch_start_timestamp)
logger.print_metrics(
metrics=train_metrics,
prompt=f"[Epoch {epoch} Finish] [Total Time: {time_per_epoch}] ",
fmt="{global_average:.4f}"
)
logger.save_metrics(
metrics=train_metrics,
prompt=f"[Epoch {epoch} Finish] [Total Time: {time_per_epoch}] ",
fmt="{global_average:.4f}",
statistic="global_average",
global_step=train_states["global_iter"],
prefix="epoch",
x_axis_step=epoch,
x_axis_name="epoch"
)
# Save checkpoint.
if (epoch + 1) % config["SAVE_CHECKPOINT_PER_EPOCH"] == 0:
save_checkpoint(model=model,
path=os.path.join(config["OUTPUTS_DIR"], f"checkpoint_{epoch}.pth"),
states=train_states,
optimizer=optimizer,
scheduler=scheduler,
only_detr=config["TRAIN_STAGE"] == "only_detr",
)
if config["INFERENCE_DATASET"] is not None:
if config["TRAIN_STAGE"] == "only_detr":
eval_metrics = evaluate_one_epoch(
config=config,
model=model,
logger=logger,
dataset=config["INFERENCE_DATASET"],
data_split=config["INFERENCE_SPLIT"],
outputs_dir=os.path.join(config["OUTPUTS_DIR"], config["MODE"],
"eval_during_train", config["INFERENCE_SPLIT"], f"epoch_{epoch}"),
only_detr=True
)
else:
eval_metrics = evaluate_one_epoch(
config=config,
model=model,
logger=logger,
dataset=config["INFERENCE_DATASET"],
data_split=config["INFERENCE_SPLIT"],
outputs_dir=os.path.join(config["OUTPUTS_DIR"], config["MODE"],
"eval_during_train", config["INFERENCE_SPLIT"], f"epoch_{epoch}"),
only_detr=False
)
eval_metrics.sync()
logger.print_metrics(
metrics=eval_metrics,
prompt=f"[Epoch {epoch} Eval] ",
fmt="{global_average:.4f}"
)
logger.save_metrics(
metrics=eval_metrics,
prompt=f"[Epoch {epoch} Eval] ",
fmt="{global_average:.4f}",
statistic="global_average",
global_step=train_states["global_iter"],
prefix="epoch",
x_axis_step=epoch,
x_axis_name="epoch"
)
# Next step.
scheduler.step()
return
def train_one_epoch(config: dict, model: MOTIP, logger: Logger,
dataloader: DataLoader, id_criterion: nn.Module,
optimizer: torch.optim,
epoch: int, states: dict, clip_max_norm: float, detr_num_train_frames: int,
detr_checkpoint_frames: int = 0, lr_warmup_epochs: int = 0):
model.train()
metrics = Metrics() # save metrics
memory_optimized_detr_criterion = config["MEMORY_OPTIMIZED_DETR_CRITERION"]
checkpoint_detr_criterion = config["CHECKPOINT_DETR_CRITERION"]
auto_memory_optimized_detr_criterion = config["AUTO_MEMORY_OPTIMIZED_DETR_CRITERION"]
tps = TPS() # save time per step
device = torch.device(config["DEVICE"])
# Check train stage:
assert config["TRAIN_STAGE"] in ["only_detr", "only_decoder", "joint"], \
f"Illegal train stage '{config['TRAIN_STAGE']}'."
model_without_ddp = get_model(model)
detr_params = []
other_params = []
for name, param in model_without_ddp.named_parameters():
if "detr" in name:
detr_params.append(param)
else:
other_params.append(param)
optimizer.zero_grad() # init optim
for i, batch in enumerate(dataloader):
if epoch < lr_warmup_epochs:
# Do lr warmup:
lr_warmup(optimizer=optimizer, epoch=epoch, iteration=i,
orig_lr=config["LR"], warmup_epochs=lr_warmup_epochs, iter_per_epoch=len(dataloader))
iter_start_timestamp = TPS.timestamp()
# prepare some meta info
num_gts = sum([len(info["boxes"]) for info in batch["infos"][0]])
B, T = len(batch["images"]), len(batch["images"][0])
detr_num_train_frames = min(detr_num_train_frames, T)
frames = batch["nested_tensors"] # (B, T, C, H, W) for tensors
infos = batch["infos"]
detr_targets = infos_to_detr_targets(infos=infos, device=device)
random_frame_idxs = torch.randperm(T)
argsort_random_frame_idx = torch.argsort(random_frame_idxs)
argsort_random_frame_idx_repeat = torch.cat([argsort_random_frame_idx + b * T for b in range(B)])
detr_train_frame_idxs = random_frame_idxs[:detr_num_train_frames]
detr_no_grad_frame_idxs = random_frame_idxs[detr_num_train_frames:]
# Prepare frames for training:
detr_train_frames = nested_tensor_index_select(frames, dim=1, index=detr_train_frame_idxs)
detr_no_grad_frames = nested_tensor_index_select(frames, dim=1, index=detr_no_grad_frame_idxs)
# (B, T) to (B*T):
detr_train_frames.tensors = rearrange(detr_train_frames.tensors, "b t c h w -> (b t) c h w")
detr_train_frames.mask = rearrange(detr_train_frames.mask, "b t h w -> (b t) h w")
detr_train_frames = detr_train_frames.to(device)
detr_no_grad_frames.tensors = rearrange(detr_no_grad_frames.tensors, "b t c h w -> (b t) c h w")
detr_no_grad_frames.mask = rearrange(detr_no_grad_frames.mask, "b t h w -> (b t) h w")
detr_no_grad_frames = detr_no_grad_frames.to(device)
detr_train_targets = detr_no_grad_targets = None
# DETR forward:
# Without Train:
if T > detr_num_train_frames:
with torch.no_grad():
if detr_checkpoint_frames > 0 and len(detr_no_grad_frames) > detr_checkpoint_frames * 4:
# To reduce CUDA memory usage:
detr_no_grad_outputs = None
# detr_no_grad_adapter_outputs = None
for batch_frames in batch_iterator(detr_checkpoint_frames * 4, detr_no_grad_frames):
batch_frames = batch_frames[0]
_ = model(frames=batch_frames)
if detr_no_grad_outputs is None:
detr_no_grad_outputs = _
else:
detr_no_grad_outputs = combine_detr_outputs(detr_no_grad_outputs, _)
else:
detr_no_grad_outputs = model(frames=detr_no_grad_frames)
else:
detr_no_grad_outputs = None
# Train:
if detr_num_train_frames > 0:
if detr_checkpoint_frames == 0 or len(detr_train_frames) <= detr_checkpoint_frames:
detr_train_outputs = model(frames=detr_train_frames)
else:
detr_train_outputs = model(frames=detr_train_frames, detr_checkpoint_frames=detr_checkpoint_frames)
else:
detr_train_outputs = None
if T > detr_num_train_frames:
detr_outputs = combine_detr_outputs(detr_train_outputs, detr_no_grad_outputs)
else:
detr_outputs = detr_train_outputs
detr_outputs = detr_outputs_index_select(detr_outputs, index=argsort_random_frame_idx_repeat.to(device))
if memory_optimized_detr_criterion or (auto_memory_optimized_detr_criterion and num_gts > 2400):
train_detr_outputs = detr_outputs_index_select(detr_outputs, index=detr_train_frame_idxs.to(device))
train_detr_targets = [detr_targets[_] for _ in detr_train_frame_idxs.tolist()]
detr_loss_dict, _ = get_model(model).detr_criterion(outputs=train_detr_outputs, targets=train_detr_targets)
match_idxs = []
with torch.no_grad():
idxs = torch.arange(0, len(detr_targets), device=device)
for idx in batch_iterator(4, idxs):
idx = idx[0]
outputs_without_aux = {k: v for k, v in detr_outputs_index_select(detr_outputs, index=idx).items() if
k != 'aux_outputs' and k != 'enc_outputs'}
m = get_model(model).detr_criterion.matcher(
outputs=outputs_without_aux,
targets=[detr_targets[_] for _ in idx.tolist()]
)
match_idxs += m
pass
pass
else:
if checkpoint_detr_criterion:
detr_loss_dict, match_idxs = checkpoint(
get_model(model).detr_criterion,
detr_outputs, detr_targets,
use_reentrant=False
)
else:
detr_loss_dict, match_idxs = get_model(model).detr_criterion(outputs=detr_outputs, targets=detr_targets)
if config["TRAIN_STAGE"] == "only_detr": # only train detr part:
id_loss = None
else:
# MOTIP processing:
match_instances = generate_match_instances(
match_idxs=match_idxs, infos=infos, detr_outputs=detr_outputs
)
assert len(match_instances) == 1, f"For simplicity, only the case of bs=1 is implemented."
# Generate field 'id_words' for instances:
get_model(model).add_random_id_words_to_instances(instances=match_instances[0])
pred_id_words, gt_id_words = get_model(model).forward_train(
track_history=match_instances,
traj_drop_ratio=config["TRAJ_DROP_RATIO"],
traj_switch_ratio=config["TRAJ_SWITCH_RATIO"] if "TRAJ_SWITCH_RATIO" in config else 0.0,
use_checkpoint=config["SEQ_DECODER_CHECKPOINT"],
)
id_loss = id_criterion(pred_id_words, gt_id_words)
# Calculate the overall loss for barkward processing:
detr_weight_dict = get_model(model).detr_criterion.weight_dict
detr_loss = sum(detr_loss_dict[k] * detr_weight_dict[k] for k in detr_loss_dict.keys() if k in detr_weight_dict)
if config["TRAIN_STAGE"] == "only_detr": # only need detr loss:
loss = detr_loss.clone()
else:
loss = detr_loss + id_loss * id_criterion.weight
# Backward the loss:
loss /= config["ACCUMULATE_STEPS"]
loss.backward()
# Add metrics to Log:
metrics["overall_loss"].update(loss.item() * config["ACCUMULATE_STEPS"])
metrics["overall_detr_loss"].update(detr_loss.item())
metrics["bbox_l1"].update(detr_loss_dict["loss_bbox"].item())
metrics["bbox_giou"].update(detr_loss_dict["loss_giou"].item())
metrics["cls_loss"].update(detr_loss_dict["loss_ce"].item())
if config["TRAIN_STAGE"] != "only_detr": # log about id branch is also need to be written:
metrics["overall_id_loss"].update(id_loss.item() * id_criterion.weight)
metrics["id_loss"].update(id_loss.item())
# Parameters update:
if (i + 1) % config["ACCUMULATE_STEPS"] == 0:
if clip_max_norm > 0:
detr_grad_norm = torch.nn.utils.clip_grad_norm_(detr_params, clip_max_norm)
other_grad_norm = torch.nn.utils.clip_grad_norm_(other_params, clip_max_norm)
metrics["detr_grad_norm"].update(detr_grad_norm.item())
metrics["other_grad_norm"].update(other_grad_norm.item())
else:
pass
optimizer.step()
optimizer.zero_grad()
iter_end_timestamp = TPS.timestamp()
tps.update(iter_end_timestamp - iter_start_timestamp)
eta = tps.eta(total_steps=len(dataloader), current_steps=i)
if (i % config["OUTPUTS_PER_STEP"] == 0) or (i == len(dataloader) - 1):
metrics["learning_rate"].clear()
metrics["learning_rate"].update(optimizer.state_dict()["param_groups"][-1]["lr"])
metrics.sync()
logger.print_metrics(
metrics=metrics,
prompt=f"[Epoch: {epoch}] [{i}/{len(dataloader)}] [tps: {tps.average:.2f}s] [eta: {TPS.format(eta)}] "
)
logger.save_metrics(
metrics=metrics,
prompt=f"[Epoch: {epoch}] [{i}/{len(dataloader)}] [tps: {tps.average:.2f}s] ",
global_step=states["global_iter"],
)
states["global_iter"] += 1
states["start_epoch"] += 1
return metrics
def generate_match_instances(match_idxs, infos, detr_outputs):
match_instances = []
B, T = len(infos), len(infos[0])
for b in range(B):
match_instances.append([])
for t in range(T):
flat_idx = b * T + t
output_idxs, info_idxs = match_idxs[flat_idx]
instances = Instances(image_size=(0, 0))
instances.ids = infos[b][t]["ids"][info_idxs]
instances.gt_boxes = infos[b][t]["boxes"][info_idxs]
instances.pred_boxes = detr_outputs["pred_boxes"][flat_idx][output_idxs]
instances.outputs = detr_outputs["outputs"][flat_idx][output_idxs]
match_instances[b].append(instances)
return match_instances
def get_param_groups(model: nn.Module, config) -> list[dict]:
def match_names(name, key_names):
for key in key_names:
if key in name:
return True
return False
# keywords
backbone_names = config["LR_BACKBONE_NAMES"]
linear_proj_names = config["LR_LINEAR_PROJ_NAMES"]
dictionary_names = [] if "LR_DICTIONARY_NAMES" not in config else config["LR_DICTIONARY_NAMES"]
_dictionary_scale = 1.0 if "LR_DICTIONARY_SCALE" not in config else config["LR_DICTIONARY_SCALE"]
param_groups = [
{
"params": [p for n, p in model.named_parameters() if match_names(n, backbone_names) and p.requires_grad],
"lr_scale": config["LR_BACKBONE_SCALE"],
"lr": config["LR"] * config["LR_BACKBONE_SCALE"]
},
{
"params": [p for n, p in model.named_parameters() if match_names(n, linear_proj_names) and p.requires_grad],
"lr_scale": config["LR_LINEAR_PROJ_SCALE"],
"lr": config["LR"] * config["LR_LINEAR_PROJ_SCALE"]
},
{
"params": [p for n, p in model.named_parameters() if match_names(n, dictionary_names) and p.requires_grad],
"lr_scale": _dictionary_scale,
"lr": config["LR"] * _dictionary_scale
},
{
"params": [p for n, p in model.named_parameters()
if not match_names(n, backbone_names)
and not match_names(n, linear_proj_names)
and not match_names(n, dictionary_names)
and p.requires_grad],
}
]
return param_groups
def lr_warmup(optimizer, epoch: int, iteration: int, orig_lr: float, warmup_epochs: int, iter_per_epoch: int):
# min_lr = 1e-8
total_warmup_iters = warmup_epochs * iter_per_epoch
current_lr_ratio = (epoch * iter_per_epoch + iteration + 1) / total_warmup_iters
current_lr = orig_lr * current_lr_ratio
for param_grop in optimizer.param_groups:
if "lr_scale" in param_grop:
param_grop["lr"] = current_lr * param_grop["lr_scale"]
else:
param_grop["lr"] = current_lr
pass
return