-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
282 lines (242 loc) · 11.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
<!DOCTYPE html>
<html lang="en">
<head>
<title>SportsVideo Dataset & Benchmark</title>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="format-detection" content="telephone=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="author" content="">
<meta name="keywords" content="">
<meta name="description" content="">
<link rel="stylesheet" type="text/css" href="css/normalize.css">
<link rel="stylesheet" type="text/css" href="fonts/icomoon/icomoon.css">
<link rel="stylesheet" type="text/css" href="css/vendor.css">
<link rel="stylesheet" type="text/css" href="style.css">
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Cormorant+SC:wght@400;700&family=Jost:wght@300;400;700&display=swap" rel="stylesheet">
<!-- <link rel="shortcut icon" href="pics/svvv.png" type="image/x-icon"> -->
<!-- script
================================================== -->
<script src="js/modernizr.js"></script>
</head>
<body>
<div id="header-wrap">
<header id="header">
<div class="container">
<div class="inner-content">
<div class="grid">
<div class="main-logo">
<a href="index.html"><img src="pics/sv.png" alt="logo"></a>
</div>
<nav id="navbar">
<div class="main-menu">
<ul class="menu-list">
<li class="menu-item active"><a href="index.html" class="active" data-effect="Home">Home</a></li>
<li class="menu-item"><a href="SportsAction.html" class="nav-link" data-effect="About">SportsAction</a></li>
<li class="menu-item"><a href="SportsMOT.html" class="nav-link" data-effect="Services">SportsMOT</a></li>
<li class="menu-item"><a href="SportsHHI.html" class="nav-link" data-effect="Projects">SportsHHI</a></li>
<li class="menu-item"><a href="SportsShot.html" class="nav-link" data-effect="Latest Blog">SportsShot</a></li>
<li class="menu-item"><a href="SportsGrounding.html" class="nav-link" data-effect="Testimonial">SportsGrounding</a></li>
<!-- <li class="menu-item "><a href="https://templatesjungle.gumroad.com/l/creatify-digital-marketing-website-template" class="nav-link" > <b> GET PRO </b> </a></li> -->
</ul>
<div class="hamburger">
<span class="bar"></span>
<span class="bar"></span>
<span class="bar"></span>
</div>
</div>
<!-- <a href="#" class="btn-hvr-effect">
<span>Let's Talk</span>
<i class="icon icon-long-arrow-right"></i>
</a> -->
<!--search-bar-->
</nav>
</div>
</div>
</div>
</header>
</div><!--header-wrap-->
<section id="billboard">
<div class="main-banner pattern-overlay">
<div class="banner-content" data-aos="fade-up">
<div style="height: 40px;"></div>
<!-- <h2 class="section-subtitle ">top design agency</h2> -->
<h3 class="banner-title">SportsVideo</h3>
<h3 class="banner-title" style="font-size: 3.6em;">Dataset & Benchmark</h3>
<div style="height: 20px;"></div>
<p>The SportsVideo Dataset & Benchmark includes five subsets:</p>
<p><i>SportsAction</i>, <i>SportsMOT</i>, <i>SportsHHI</i>, <i>SportsShot</i>, and <i>SportsGrounding</i>.</p>
<div style="height: 40px;"></div>
<p><a href="http://mcg.nju.edu.cn/en/index.html">MCG Group @ Nanjing University</a></p>
<!-- <div class="btn-wrap">
<a href="#" class="btn-accent">Contact Us</a>
</div> -->
</div><!--banner-content-->
<figure class="main-logo" style="justify-content: right;">
<img src="pics/svvvv33.png" alt="banner" class="banner-image" style="height: 80%; width: auto; float: right;">
</figure>
</div>
</div>
</section>
<button id="scrollToTopBtn">Top</button>
<section id="about">
<div class="container">
<div class="row">
<div class="inner-content">
<div class="company-detail">
<div class="grid">
<figure data-aos="fade-up">
<img src="pics/sa_ms_visual_min.png" alt="book" class="single-image">
</figure>
<div class="detail-entry" data-aos="fade-up">
<div class="section-header">
<h2 class="section-subtitle liner">Spatio-temporal action detection</h2>
<h3 class="section-title">SportsAction Dataset</h3>
</div>
<div class="detail-wrap">
<p>We analyze the important ingredients of constructing a realistic and challenging dataset for spatio-temporal action detection by proposing three criteria: (1) multi-person scenes and motion dependent identification, (2) with well-defined boundaries, (3) relatively fine-grained classes of high complexity. Based on these guidelines, we build the dataset of MultiSports v1.0 by selecting 4 sports classes, collecting 3200 video clips, and annotating 37701 action instances with 902k bounding boxes. Our datasets are characterized with important properties of high diversity, dense annotation, and high quality.</p>
<div class="btn-wrap">
<a href="SportsAction.html" class="btn-accent">Get More</a>
</div>
</div><!--description-->
</div>
</div><!--grid-->
<div style="height: 100px;"></div>
</div>
</div><!--inner-content-->
</div>
</div>
</section>
<section id="services">
<div class="container">
<div class="row">
<div class="inner-content">
<div class="service-content">
<div class="grid">
<div class="detail-entry" data-aos="fade-up">
<div class="section-header">
<h2 class="section-subtitle liner">multi-object tracking</h2>
<h3 class="section-title">SportsMOT Dataset</h3>
</div>
<div class="detail-wrap">
<p>We present a new large-scale multi-object tracking dataset in diverse sports scenes, coined as SportsMOT, where all players on the court are supposed to be tracked. It consists of 240 video sequences, over 150K frames (almost 15× MOT17) and over 1.6M bounding boxes (3× MOT17) collected from 3 sports categories, including basketball, volleyball and football. Our dataset is characterized with two key properties: 1) fast and variable-speed motion and 2) similar yet distinguishable appearance.</p>
<div class="btn-wrap">
<a href="SportsMOT.html" class="btn-accent">Get More</a>
</div>
</div><!--detail-wrap-->
</div>
<figure data-aos="fade-up">
<img src="pics/sm_sports_mot.gif" alt="book" class="single-image">
</figure>
</div><!--grid-->
<div style="height: 40px;"></div>
</div>
</div><!--inner-content-->
</div>
</div>
</div>
</section>
<section id="about">
<div class="container">
<div class="row">
<div class="inner-content">
<div class="company-detail">
<div class="grid">
<figure data-aos="fade-up">
<img src="pics/sportsHHI1.gif" alt="book" class="single-image">
</figure>
<div class="detail-entry" data-aos="fade-up">
<div class="section-header">
<h2 class="section-subtitle liner">video visual relation detection</h2>
<h3 class="section-title">SportsHHI Dataset</h3>
</div>
<div class="detail-wrap">
<p>We propose a new video visual relation detection task: video human-human interaction detection, and build a dataset named SportsHHI for it. SportsHHI contains 34 high-level interaction classes from basketball and volleyball sports. 118,075 human bounding boxes and 50,649 interaction instances are annotated on 11,398 keyframes. To benchmark this, we propose a two-stage baseline method and conduct extensive experiments to reveal the key factors for a successful human-human interaction detector.</p>
<div class="btn-wrap">
<a href="SportsHHI.html" class="btn-accent">Get More</a>
</div>
</div><!--description-->
</div>
</div><!--grid-->
<div style="height: 100px;"></div>
</div>
</div><!--inner-content-->
</div>
</div>
</section>
<section id="services">
<div class="container">
<div class="row">
<div class="inner-content">
<div class="service-content">
<div class="grid">
<div class="detail-entry" data-aos="fade-up">
<div class="section-header">
<h2 class="section-subtitle liner">shot segmentation & shot boundary detection</h2>
<h3 class="section-title">SportsShot Dataset</h3>
</div>
<div class="detail-wrap">
<p>SportsShot consists of 1,200 sports videos, over 4M frames, and over 30K shot annotations. Our SportsShot is characterized with important properties of well-defined shot boundaries, fine-grained shot categories of complexity, and high-quality annotations with consistency, resulting in more challenges in both shot segmentation and boundary detection. In particular, we group the sports shot into seven semantic categories, including close-up, close shot, full view, audience, transition, zooming and others.</p>
<div class="btn-wrap">
<a href="SportsShot.html" class="btn-accent">Get More</a>
</div>
</div><!--detail-wrap-->
</div>
<figure data-aos="fade-up">
<img src="pics/SportsShot.gif" alt="book" class="single-image">
</figure>
</div><!--grid-->
<div style="height: 40px;"></div>
</div>
</div><!--inner-content-->
</div>
</div>
</div>
</section>
<section id="about">
<div class="container">
<div class="row">
<div class="inner-content">
<div class="company-detail">
<div class="grid">
<figure data-aos="fade-up">
<img src="pics/sg1.png" alt="book" class="single-image">
</figure>
<div class="detail-entry" data-aos="fade-up">
<div class="section-header">
<h2 class="section-subtitle liner">spatio-temporal video grounding</h2>
<h3 class="section-title">SportsGrounding Dataset</h3>
</div>
<div class="detail-wrap">
<p>We propose a spatio-temporal video grounding dataset for sports videos, coined as SportsGrounding. We analyze the important components for constructing a realistic and challenging dataset for spatio-temporal video grounding by proposing two criteria: (1) grounding in multi-person scenes and motion-dependent contexts, and (2) well-defined boundaries. Based on these guidelines, we build the SportsGrounding v1.0 dataset by collecting 526 video clips of basketball category and annotating 4,479 instances with 113k bounding boxes.</p>
<div class="btn-wrap">
<a href="SportsGrounding.html" class="btn-accent">Get More</a>
</div>
</div><!--description-->
</div>
</div><!--grid-->
<div style="height: 100px;"></div>
</div>
</div><!--inner-content-->
</div>
</div>
</section>
<div id="footer-bottom">
<div class="container">
<div class="grid">
<div class="copyright">
<p>© 2024 <a href="https://mcg.nju.edu.cn/">Multimedia Computing Group, Nanjing University.</a> All rights reserved.</p>
</div>
</div><!--grid-->
</div>
</div>
<script src="js/jquery-1.11.0.min.js"></script>
<script src="js/plugins.js"></script>
<script src="js/slideNav.min.js"></script>
<script src="js/slideNav.js"></script>
<script src="js/script.js"></script>
</body>
</html>