-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
116 lines (98 loc) · 4.59 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from mcloader.transforms_ss import *
from RandAugment import RandAugment
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from mcloader import ClassificationDataset
class GroupTransform(object):
def __init__(self, transform):
self.worker = transform
def __call__(self, img_group):
return [self.worker(img) for img in img_group]
CLIP_DEFAULT_MEAN = (0.4815, 0.4578, 0.4082)
CLIP_DEFAULT_STD = (0.2686, 0.2613, 0.2758)
def build_dataset(split, args):
assert split in ['train', 'val', 'test']
is_train = split == "train"
if is_train:
list_file = args.train_list_file
else:
list_file = args.val_list_file
transform = build_transform(is_train, args, split)
if is_train and args.randaug_n > 0:
transform = randAugment(transform, args)
assert args.data_set in ['UCF101', 'HMDB51', 'Kinetics',
"Kinetics100_base", 'Kinetics100_test', 'k100_support_query',
'kinetics400_openset']
if args.data_set == "UCF101":
nb_classes = 101
elif args.data_set == "HMDB51":
nb_classes = 51
elif args.data_set == "Kinetics":
nb_classes = 400
elif args.data_set == 'Kinetics100_base':
nb_classes = 64
elif args.data_set == 'Kinetics100_test':
nb_classes = 24
elif args.data_set == 'k100_support_query':
nb_classes = 5
elif args.data_set == 'kinetics400_openset':
nb_classes = 250
else:
nb_classes = 200
dataset = ClassificationDataset(
args.data_root_train if is_train else args.data_root_val,
list_file,
split=split,
nb_classes=nb_classes,
desc_path=args.desc_path,
context_length=args.context_length,
pipeline=transform,
transform=transform,
select=args.select,
num_segments=args.num_segments,
new_length=args.new_length,
dataset=args.dataset,
is_video=args.is_video,
select_num=args.select_num,
index_bias=args.index_bias,
test_mode=(not is_train),
io_backend=args.io_backend,
only_video=args.only_video,
dense_sample=args.dense_sample,
num_clips=args.num_clips,
twice_sample=args.twice_sample,
naive_txt=args.naive_txt)
nb_classes = dataset.nb_classes
return dataset, nb_classes
def build_transform(is_train, args, split):
DEFAULT_MEAN = CLIP_DEFAULT_MEAN if args.clip_ms else IMAGENET_DEFAULT_MEAN
DEFAULT_STD = CLIP_DEFAULT_STD if args.clip_ms else IMAGENET_DEFAULT_STD
scale_size = args.input_size * args.scale_size // args.input_size
if is_train:
unique = torchvision.transforms.Compose([GroupMultiScaleCrop(args.input_size, [1, .875, .75, .66]),
GroupRandomHorizontalFlip(is_sth='some' in args.data_set),
GroupRandomColorJitter(p=0.8, brightness=0.4, contrast=0.4,
saturation=0.2, hue=0.1),
GroupRandomGrayscale(p=0.2),
GroupGaussianBlur(p=0.0),
GroupSolarization(p=0.0)])
else:
if args.test_crops == 1 or split == 'val':
unique = torchvision.transforms.Compose([GroupScale(scale_size),
GroupCenterCrop(args.input_size)])
elif args.test_crops == 3:
unique = torchvision.transforms.Compose([GroupFullResSample(args.input_size, scale_size, flip=False)])
elif args.test_crops == 5:
unique = torchvision.transforms.Compose([GroupOverSample(args.input_size, scale_size, flip=False)])
elif args.test_crops == 10:
unique = torchvision.transforms.Compose([GroupOverSample(args.input_size, scale_size)])
else:
raise ValueError("Only 1, 3, 5, 10 crops are supported while we got {}".format(args.test_crops))
common = torchvision.transforms.Compose([Stack(roll=False),
ToTorchFormatTensor(div=True),
GroupNormalize(DEFAULT_MEAN,
DEFAULT_STD)])
return torchvision.transforms.Compose([unique, common])
def randAugment(transform_train, config):
print('Using RandAugment!')
transform_train.transforms.insert(0, GroupTransform(RandAugment(config.randaug_n, config.randaug_m)))
return transform_train