From 1261b11f6b241ce9b62573c3f78728b30d28bab2 Mon Sep 17 00:00:00 2001 From: JordyLopez27 <72617372+JordyLopez27@users.noreply.github.com> Date: Mon, 6 Nov 2023 12:16:59 -0600 Subject: [PATCH] periods --- A1-Brouwer/Documentation/AnisotropicDimensionDoc.m2 | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/A1-Brouwer/Documentation/AnisotropicDimensionDoc.m2 b/A1-Brouwer/Documentation/AnisotropicDimensionDoc.m2 index 6fe65ca..80ca6eb 100644 --- a/A1-Brouwer/Documentation/AnisotropicDimensionDoc.m2 +++ b/A1-Brouwer/Documentation/AnisotropicDimensionDoc.m2 @@ -44,10 +44,10 @@ document{ Headline => "returns the anisotropic dimension of a symmetric bilinear form", Usage => "anisotropicDimension(beta)", Inputs => { - GrothendieckWittClass => "beta" => {"over a field ", TEX///$k$///, " where ", TEX///$k$///, " is the complex numbers, reals, rationals, or a finite field."}, + GrothendieckWittClass => "beta" => {"over a field ", TEX///$k$///, " where ", TEX///$k$///, " is the complex numbers, reals, rationals, or a finite field"}, }, Outputs => { - ZZ => {"the rank of the anisotropic part of ", TEX///$\beta$///, "."}, + ZZ => {"the rank of the anisotropic part of ", TEX///$\beta$///}, }, PARA{"By Witt decomposition, any form decomposes uniquely as ", TEX///$\beta \cong k \mathbb{H} \oplus \beta_a$///," where the form ", TEX///$\beta_a$///," is anisotropic. The rank of ", TEX///$\beta_a$///, " is called the ", EM "anisotropic dimension", " of ", TEX///$\beta$///, "."}, PARA{"The anisotropic dimension of a form defined over the rationals is the maximum of the ", TO2(anisotropicDimensionQp,"anistropic dimension at each of the completions"), " of ", TEX///$\mathbb{Q}$///, "."},