forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_data_kitti.py
149 lines (122 loc) · 4.96 KB
/
gen_data_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
""" Offline data generation for the KITTI dataset."""
import os
from absl import app
from absl import flags
from absl import logging
import numpy as np
import cv2
import os, glob
import alignment
from alignment import compute_overlap
from alignment import align
SEQ_LENGTH = 3
WIDTH = 416
HEIGHT = 128
STEPSIZE = 1
INPUT_DIR = '/usr/local/google/home/anelia/struct2depth/KITTI_FULL/kitti-raw-uncompressed'
OUTPUT_DIR = '/usr/local/google/home/anelia/struct2depth/KITTI_procesed/'
def get_line(file, start):
file = open(file, 'r')
lines = file.readlines()
lines = [line.rstrip() for line in lines]
ret = None
for line in lines:
nline = line.split(': ')
if nline[0]==start:
ret = nline[1].split(' ')
ret = np.array([float(r) for r in ret], dtype=float)
ret = ret.reshape((3,4))[0:3, 0:3]
break
file.close()
return ret
def crop(img, segimg, fx, fy, cx, cy):
# Perform center cropping, preserving 50% vertically.
middle_perc = 0.50
left = 1-middle_perc
half = left/2
a = img[int(img.shape[0]*(half)):int(img.shape[0]*(1-half)), :]
aseg = segimg[int(segimg.shape[0]*(half)):int(segimg.shape[0]*(1-half)), :]
cy /= (1/middle_perc)
# Resize to match target height while preserving aspect ratio.
wdt = int((128*a.shape[1]/a.shape[0]))
x_scaling = float(wdt)/a.shape[1]
y_scaling = 128.0/a.shape[0]
b = cv2.resize(a, (wdt, 128))
bseg = cv2.resize(aseg, (wdt, 128))
# Adjust intrinsics.
fx*=x_scaling
fy*=y_scaling
cx*=x_scaling
cy*=y_scaling
# Perform center cropping horizontally.
remain = b.shape[1] - 416
cx /= (b.shape[1]/416)
c = b[:, int(remain/2):b.shape[1]-int(remain/2)]
cseg = bseg[:, int(remain/2):b.shape[1]-int(remain/2)]
return c, cseg, fx, fy, cx, cy
def run_all():
ct = 0
if not OUTPUT_DIR.endswith('/'):
OUTPUT_DIR = OUTPUT_DIR + '/'
for d in glob.glob(INPUT_DIR + '/*/'):
date = d.split('/')[-2]
file_calibration = d + 'calib_cam_to_cam.txt'
calib_raw = [get_line(file_calibration, 'P_rect_02'), get_line(file_calibration, 'P_rect_03')]
for d2 in glob.glob(d + '*/'):
seqname = d2.split('/')[-2]
print('Processing sequence', seqname)
for subfolder in ['image_02/data', 'image_03/data']:
ct = 1
seqname = d2.split('/')[-2] + subfolder.replace('image', '').replace('/data', '')
if not os.path.exists(OUTPUT_DIR + seqname):
os.mkdir(OUTPUT_DIR + seqname)
calib_camera = calib_raw[0] if subfolder=='image_02/data' else calib_raw[1]
folder = d2 + subfolder
files = glob.glob(folder + '/*.png')
files = [file for file in files if not 'disp' in file and not 'flip' in file and not 'seg' in file]
files = sorted(files)
for i in range(SEQ_LENGTH, len(files)+1, STEPSIZE):
imgnum = str(ct).zfill(10)
if os.path.exists(OUTPUT_DIR + seqname + '/' + imgnum + '.png'):
ct+=1
continue
big_img = np.zeros(shape=(HEIGHT, WIDTH*SEQ_LENGTH, 3))
wct = 0
for j in range(i-SEQ_LENGTH, i): # Collect frames for this sample.
img = cv2.imread(files[j])
ORIGINAL_HEIGHT, ORIGINAL_WIDTH, _ = img.shape
zoom_x = WIDTH/ORIGINAL_WIDTH
zoom_y = HEIGHT/ORIGINAL_HEIGHT
# Adjust intrinsics.
calib_current = calib_camera.copy()
calib_current[0, 0] *= zoom_x
calib_current[0, 2] *= zoom_x
calib_current[1, 1] *= zoom_y
calib_current[1, 2] *= zoom_y
calib_representation = ','.join([str(c) for c in calib_current.flatten()])
img = cv2.resize(img, (WIDTH, HEIGHT))
big_img[:,wct*WIDTH:(wct+1)*WIDTH] = img
wct+=1
cv2.imwrite(OUTPUT_DIR + seqname + '/' + imgnum + '.png', big_img)
f = open(OUTPUT_DIR + seqname + '/' + imgnum + '_cam.txt', 'w')
f.write(calib_representation)
f.close()
ct+=1
def main(_):
run_all()
if __name__ == '__main__':
app.run(main)