-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10-job-requirements.R
101 lines (91 loc) · 3.51 KB
/
10-job-requirements.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
job_post_translated <- pin_read(board, "job_post_translated")
# Age minimum -------------------------------------------------
age_minimum_df <- job_post_translated |>
transmute(
line = row_number(),
text = str_remove_all(JobDescription, "\\t|\\n")
) |>
mutate(
age_1 = str_extract(text, "[0-9]{2} years[ A-z]* age"),
age_2 = str_extract(text, "[0-9]{2} years old and below"),
age_5 = str_extract(text, "[Ll]ess than [0-9]{2} years"),
age_3 = str_extract(text, "[0-9]{2}[- A-z]+[0-9]{2} years old"),
age_4 = str_extract(text, " [Aa]ge[: ]+[A-z: ]*[0-9]{2}[- A-z]*[0-9]{2}"),
) |>
select(- text) |>
pivot_longer(-1) |>
drop_na() |>
transmute(
line,
age_min = str_extract(value, "\\d{1,2}"),
age_min = as.numeric(age_min),
age_min = ifelse(age_min < 20 | age_min > 60, NA, age_min)
)
# Experience, degree ------------------------------------------
around <- \(x) str_c("\\W{0,}\\w{0,}\\W{0,}\\w{0,}\\W{0,}\\w{0,}", x ,"\\w{0,}\\W{0,}\\w{0,}\\W{0,}\\w{0,}\\W{0,}\\w{0,}\\W{0,}\\w{0,}\\W{0,}")
titles <- pin_read(board, "unemployed_df") |>
pull(Education) |>
unique()
requirements_df <- job_post_translated |>
mutate(
line = row_number(),
text = str_remove_all(JobDescription, "\\t|\\n")
) |>
left_join(age_minimum_df, by = "line") |>
splitted_transmute(split_number = 100,
line,
age_min,
experience_sent = str_extract(text, around("experience")),
experience_min = map_dbl(experience_sent, function(sent) {
num = str_extract_all(sent, pattern = "\\d{1,2}")[[1]]
if (length(num) > 0) {
as.numeric(num[1])
} else {
NA
}
}
),
experience_min = ifelse(experience_min > 30, NA, experience_min),
experience_min = case_when(
!is.na(experience_min) ~ as.numeric(experience_min),
Experience == "Internship" ~ 0,
Experience == "Entry level" ~ 2,
Experience == "Associate" ~ 5,
Experience == "Director" ~ 15,
Experience == "Executive" ~ 20,
TRUE ~ 0
),
degree = str_extract(text, "[ A-z]+ [A-z]+ degree [ A-z]+ "),
degree_title = str_extract(
degree,
paste("(?i)", c(titles, " ba "," ma ", " mba", "bsc", "undergraduate", "university", "college"), sep = "", collapse = "|")
),
min_degree = case_when(
str_detect(degree_title, paste(c("(?i)diploma"), sep = "", collapse = "|")) ~ "Diploma",
str_detect(degree_title, paste(c("(?i)bachelor", "(?i)ba", "(?i)bsc", "university", "undergraduate", "college"), sep = "", collapse = "|")) ~ "Bachelor",
str_detect(degree_title, paste(c("(?i)master", "(?i)ma", "(?i)msc", "(?i)mba"), sep = "", collapse = "|")) ~ "Master",
str_detect(degree_title, paste(c("(?i)doctorate", "(?i)phd"), sep = "", collapse = "|")) ~ "Doctorate",
TRUE ~ NA_character_
),
min_degree = ifelse(is.na(min_degree), Degree, min_degree),
min_degree = ifelse(min_degree == "NULL", NA, min_degree),
min_degree = factor(min_degree, levels = c("Diploma", "Bachelor", "Master", "Doctorate"), ordered = TRUE),
degree_year = case_when(
min_degree == "Diploma" ~ 2,
min_degree == "Bachelor" ~ 3,
min_degree == "Master" ~ 5,
min_degree == "Doctorate" ~ 8,
TRUE ~ 0
),
age_from_exp = 18 + experience_min + degree_year,
gender = case_when(
str_detect(text, "[Ff]emale") ~ "Female",
str_detect(text, "[ /][Mm]ale") ~ "Male",
TRUE ~ NA_character_
)
)
requirements_df |>
pin_write(
board = board,
"Requirements for the job"
)