-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathfog_simulation.py
367 lines (243 loc) · 11.3 KB
/
fog_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import os
import copy
import math
import pickle
import argparse
import numpy as np
import multiprocessing as mp
from tqdm import tqdm
from pathlib import Path
from typing import Dict, List, Tuple
from scipy.constants import speed_of_light as c # in m/s
RNG = np.random.default_rng(seed=42)
AVAILABLE_TAU_Hs = [20]
LIDAR_FOLDERS = ['lidar_hdl64_strongest', 'lidar_hdl64_last']
INTEGRAL_PATH = Path(os.path.dirname(os.path.realpath(__file__))) / 'integral_lookup_tables' / 'original'
def parse_arguments():
parser = argparse.ArgumentParser(description='LiDAR foggification')
parser.add_argument('-c', '--n_cpus', help='number of CPUs that should be used', type=int, default=mp.cpu_count())
parser.add_argument('-f', '--n_features', help='number of point features', type=int, default=5)
parser.add_argument('-r', '--root_folder', help='root folder of dataset',
default=str(Path.home() / 'datasets/DENSE/SeeingThroughFog'))
arguments = parser.parse_args()
return arguments
def get_available_alphas() -> List[float]:
alphas = []
for file in os.listdir(INTEGRAL_PATH):
if file.endswith(".pickle"):
alpha = file.split('_')[-1].replace('.pickle', '')
alphas.append(float(alpha))
return sorted(alphas)
class ParameterSet:
def __init__(self, **kwargs) -> None:
self.n = 500
self.n_min = 100
self.n_max = 1000
self.r_range = 100
self.r_range_min = 50
self.r_range_max = 250
##########################
# soft target a.k.a. fog #
##########################
# attenuation coefficient => amount of fog
self.alpha = 0.06
self.alpha_min = 0.003
self.alpha_max = 0.5
self.alpha_scale = 1000
# meteorological optical range (in m)
self.mor = np.log(20) / self.alpha
# backscattering coefficient (in 1/sr) [sr = steradian]
self.beta = 0.046 / self.mor
self.beta_min = 0.023 / self.mor
self.beta_max = 0.092 / self.mor
self.beta_scale = 1000 * self.mor
##########
# sensor #
##########
# pulse peak power (in W)
self.p_0 = 80
self.p_0_min = 60
self.p_0_max = 100
# half-power pulse width (in s)
self.tau_h = 2e-8
self.tau_h_min = 5e-9
self.tau_h_max = 8e-8
self.tau_h_scale = 1e9
# total pulse energy (in J)
self.e_p = self.p_0 * self.tau_h # equation (7) in [1]
# aperture area of the receiver (in in m²)
self.a_r = 0.25
self.a_r_min = 0.01
self.a_r_max = 0.1
self.a_r_scale = 1000
# loss of the receiver's optics
self.l_r = 0.05
self.l_r_min = 0.01
self.l_r_max = 0.10
self.l_r_scale = 100
self.c_a = c * self.l_r * self.a_r / 2
self.linear_xsi = True
self.D = 0.1 # in m (displacement of transmitter and receiver)
self.ROH_T = 0.01 # in m (radius of the transmitter aperture)
self.ROH_R = 0.01 # in m (radius of the receiver aperture)
self.GAMMA_T_DEG = 2 # in deg (opening angle of the transmitter's FOV)
self.GAMMA_R_DEG = 3.5 # in deg (opening angle of the receiver's FOV)
self.GAMMA_T = math.radians(self.GAMMA_T_DEG)
self.GAMMA_R = math.radians(self.GAMMA_R_DEG)
# assert self.GAMMA_T_DEG != self.GAMMA_R_DEG, 'would lead to a division by zero in the calculation of R_2'
#
# self.R_1 = (self.D - self.ROH_T - self.ROH_R) / (
# np.tan(self.GAMMA_T / 2) + np.tan(self.GAMMA_R / 2)) # in m (see Figure 2 and Equation (11) in [1])
# self.R_2 = (self.D - self.ROH_R + self.ROH_T) / (
# np.tan(self.GAMMA_R / 2) - np.tan(self.GAMMA_T / 2)) # in m (see Figure 2 and Equation (12) in [1])
# R_2 < 10m in most sensors systems
# co-axial setup (where R_2 = 0) is most affected by water droplet returns
# range at which receiver FOV starts to cover transmitted beam (in m)
self.r_1 = 0.9
self.r_1_min = 0
self.r_1_max = 10
self.r_1_scale = 10
# range at which receiver FOV fully covers transmitted beam (in m)
self.r_2 = 1.0
self.r_2_min = 0
self.r_2_max = 10
self.r_2_scale = 10
###############
# hard target #
###############
# distance to hard target (in m)
self.r_0 = 30
self.r_0_min = 1
self.r_0_max = 200
# reflectivity of the hard target [0.07, 0.2, > 4 => low, normal, high]
self.gamma = 0.000001
self.gamma_min = 0.0000001
self.gamma_max = 0.00001
self.gamma_scale = 10000000
# differential reflectivity of the target
self.beta_0 = self.gamma / np.pi
self.__dict__.update(kwargs)
def get_integral_dict(p: ParameterSet) -> Dict:
alphas = get_available_alphas()
alpha = min(alphas, key=lambda x: abs(x - p.alpha))
tau_h = min(AVAILABLE_TAU_Hs, key=lambda x: abs(x - int(p.tau_h * 1e9)))
filename = INTEGRAL_PATH / f'integral_0m_to_200m_stepsize_0.1m_tau_h_{tau_h}ns_alpha_{alpha}.pickle'
with open(filename, 'rb') as handle:
integral_dict = pickle.load(handle)
return integral_dict
def P_R_fog_hard(p: ParameterSet, pc: np.ndarray) -> np.ndarray:
r_0 = np.linalg.norm(pc[:, 0:3], axis=1)
pc[:, 3] = np.round(np.exp(-2 * p.alpha * r_0) * pc[:, 3])
return pc
def P_R_fog_soft(p: ParameterSet, pc: np.ndarray, original_intesity: np.ndarray, noise: int, gain: bool = False,
noise_variant: str = 'v1') -> Tuple[np.ndarray, np.ndarray, Dict]:
augmented_pc = np.zeros(pc.shape)
fog_mask = np.zeros(len(pc), dtype=bool)
r_zeros = np.linalg.norm(pc[:, 0:3], axis=1)
min_fog_response = np.inf
max_fog_response = 0
num_fog_responses = 0
integral_dict = get_integral_dict(p)
r_noise = RNG.integers(low=1, high=20, size=1)[0]
r_noise = 10
for i, r_0 in enumerate(r_zeros):
# load integral values from precomputed dict
key = float(str(round(r_0, 1)))
# limit key to a maximum of 200 m
fog_distance, fog_response = integral_dict[min(key, 200)]
fog_response = fog_response * original_intesity[i] * (r_0 ** 2) * p.beta / p.beta_0
# limit to 255
fog_response = min(fog_response, 255)
if fog_response > pc[i, 3]:
fog_mask[i] = 1
num_fog_responses += 1
scaling_factor = fog_distance / r_0
augmented_pc[i, 0] = pc[i, 0] * scaling_factor
augmented_pc[i, 1] = pc[i, 1] * scaling_factor
augmented_pc[i, 2] = pc[i, 2] * scaling_factor
augmented_pc[i, 3] = fog_response
# keep 5th feature if it exists
if pc.shape[1] > 4:
augmented_pc[i, 4] = pc[i, 4]
if noise > 0:
if noise_variant == 'v1':
# add uniform noise based on initial distance
distance_noise = RNG.uniform(low=r_0 - noise, high=r_0 + noise, size=1)[0]
noise_factor = r_0 / distance_noise
elif noise_variant == 'v2':
# add noise in the power domain
power = RNG.uniform(low=-1, high=1, size=1)[0]
noise_factor = max(1.0, noise/5) ** power # noise=10 => noise_factor ranges from 1/2 to 2
elif noise_variant == 'v3':
# add noise in the power domain
power = RNG.uniform(low=-0.5, high=1, size=1)[0]
noise_factor = max(1.0, noise*4/10) ** power # noise=10 => ranges from 1/2 to 4
elif noise_variant == 'v4':
additive = r_noise * RNG.beta(a=2, b=20, size=1)[0]
new_dist = fog_distance + additive
noise_factor = new_dist / fog_distance
else:
raise NotImplementedError(f"noise variant '{noise_variant}' is not implemented (yet)")
augmented_pc[i, 0] = augmented_pc[i, 0] * noise_factor
augmented_pc[i, 1] = augmented_pc[i, 1] * noise_factor
augmented_pc[i, 2] = augmented_pc[i, 2] * noise_factor
if fog_response > max_fog_response:
max_fog_response = fog_response
if fog_response < min_fog_response:
min_fog_response = fog_response
else:
augmented_pc[i] = pc[i]
if gain:
max_intensity = np.ceil(max(augmented_pc[:, 3]))
gain_factor = 255 / max_intensity
augmented_pc[:, 3] *= gain_factor
simulated_fog_pc = None
if num_fog_responses > 0:
fog_points = augmented_pc[fog_mask]
simulated_fog_pc = fog_points
info_dict = {'min_fog_response': min_fog_response,
'max_fog_response': max_fog_response,
'num_fog_responses': num_fog_responses}
return augmented_pc, simulated_fog_pc, info_dict
def simulate_fog(p: ParameterSet, pc: np.ndarray, noise: int, gain: bool = False, noise_variant: str = 'v1',
hard: bool = True, soft: bool = True) -> Tuple[np.ndarray, np.ndarray, Dict]:
augmented_pc = copy.deepcopy(pc)
original_intensity = copy.deepcopy(pc[:, 3])
info_dict = None
simulated_fog_pc = None
if hard:
augmented_pc = P_R_fog_hard(p, augmented_pc)
if soft:
augmented_pc, simulated_fog_pc, info_dict = P_R_fog_soft(p, augmented_pc, original_intensity, noise, gain,
noise_variant)
return augmented_pc, simulated_fog_pc, info_dict
if __name__ == '__main__':
args = parse_arguments()
print('')
print(f'using {args.n_cpus} CPUs')
available_alphas = get_available_alphas()
for lidar_folder in LIDAR_FOLDERS:
src_folder = os.path.join(args.root_folder, lidar_folder)
all_files = []
for root, dirs, files in os.walk(src_folder, followlinks=True):
assert (root == src_folder)
all_files = sorted(files)
all_paths = [os.path.join(src_folder, file) for file in all_files]
for available_alpha in available_alphas:
dst_folder = f'{src_folder}_CVL_beta_{available_alpha:.3f}'
Path(dst_folder).mkdir(parents=True, exist_ok=True)
print('')
print(f'alpha {available_alpha}')
print('')
print(f'searching for point clouds in {src_folder}')
print(f'saving augmented point clouds to {dst_folder}')
parameter_set = ParameterSet(alpha=available_alpha, gamma=0.000001)
def _map(i: int) -> None:
points = np.fromfile(all_paths[i], dtype=np.float32)
points = points.reshape((-1, args.n_features))
points, _, _ = simulate_fog(parameter_set, points, 10)
lidar_save_path = os.path.join(dst_folder, all_files[i])
points.astype(np.float32).tofile(lidar_save_path)
n = len(all_files)
with mp.Pool(args.n_cpus) as pool:
l = list(tqdm(pool.imap(_map, range(n)), total=n))