-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_moviegen.py
899 lines (768 loc) · 33.5 KB
/
train_moviegen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
"""
Reference code for Movie Gen training and inference.
"""
from typing import Tuple, Optional, List
from dataclasses import dataclass
from inspect import isfunction
from functools import partial
from pathlib import Path
import argparse
import inspect
import random
import signal
import math
import time
import os
from torch.distributed import init_process_group, destroy_process_group
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from torch.nn import functional as F
from einops import rearrange, repeat
from torch import einsum
from PIL import Image
import matplotlib.pyplot as plt
import torch.nn as nn
import numpy as np
import torchvision
import torch
import cv2
from text_encoder import TextEncoder, TextEncoderConfig
from tae import TAE, TAEConfig
from util import (
dump_dict_to_yaml, asspath, mkpath, print0, cleanup, signal_handler)
"""
-------------------------------------------------------------------------------
torch helpers
-------------------------------------------------------------------------------
"""
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
def linear_quadratic_t_schedule(a: float = 0.,
b: float = 1.,
steps: int = 50,
N: int = 1000):
assert steps < N
halfsteps = steps // 2
first = np.linspace(a, b, N)[:halfsteps].tolist()
second = np.geomspace(first[-1], b, halfsteps).tolist()
return first + second
def euler_sampler():
pass
def exists(val):
return val is not None
def uniq(arr):
return {el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
"""
-------------------------------------------------------------------------------
building blocks
-------------------------------------------------------------------------------
"""
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class CrossAttention(nn.Module):
"""
pulled from https://github.com/facebookresearch/DiT
"""
def __init__(self, query_dim,
context_dim=None,
heads=8,
dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
context_dim = context_dim if context_dim is not None else query_dim
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim),
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(
t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) j ()', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, config.ffn_dim, bias=False)
self.c_fc2 = nn.Linear(config.n_embd, config.ffn_dim, bias=False)
self.c_proj = nn.Linear(config.ffn_dim, config.n_embd, bias=False)
def forward(self, x):
# REVISIT:uses SwiGLU
# SwiGLU self.c_proj(F.silu(self.c_fc2(x)) * self.c_fc(x))
x1 = self.c_fc(x)
x2 = self.c_fc2(x)
x2 = F.silu(x2)
x = x1 * x2
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.rmsnorm1 = RMSNorm(config.n_embd, config.norm_eps)
self.attn = CrossAttention(query_dim=config.n_embd,
heads=config.n_head,
dim_head=config.dim_head,
dropout=config.dropout)
self.rmsnorm2 = RMSNorm(config.n_embd, config.norm_eps)
self.cross_attn = CrossAttention(query_dim=config.n_embd,
context_dim=config.n_embd,
heads=config.n_head,
dim_head=config.dim_head,
dropout=config.dropout)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(config.n_embd, 6 * config.n_embd, bias=True)
)
self.mlp = MLP(config)
def forward(self,
x: torch.Tensor,
ctx: torch.Tensor,
t_emb: torch.Tensor,
pos_emb: torch.Tensor,
mask: torch.Tensor = None):
# get adaln scale/shift
# this is how time embedding is included in the model
shift_1, scale_1, alpha_1, shift_2, scale_2, alpha_2 = \
self.adaLN_modulation(t_emb).chunk(6, dim=1)
x = x + pos_emb
x = x + alpha_1 * self.attn(modulate(self.rmsnorm1(x),
shift_1, scale_1), mask=mask)
x = x + self.cross_attn(x, ctx, mask=mask)
x = x + alpha_2 * self.mlp(modulate(self.rmsnorm2(x),
shift_2, scale_2))
return x
class Head(nn.Module):
"""
The final layer of MovieGen
"""
def __init__(self, config):
super().__init__()
self.norm = RMSNorm(config.n_embd, config.norm_eps)
self.linear = nn.Linear(config.n_embd,
np.prod(config.patch_k) * config.in_channels,
bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(config.n_embd, 2 * config.n_embd, bias=True)
)
def forward(self, x, c):
# in: [B, ctx_len, 6144]
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm(x), shift, scale)
x = self.linear(x)
# out: [B, ctx_len, in_channels=16]
return x
class TimestepEmbedder(nn.Module):
"""
Copied from DiT
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-math.log(max_period) *
torch.arange(start=0, end=half, dtype=torch.float32)
/ half).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
"""
-------------------------------------------------------------------------------
paths
-------------------------------------------------------------------------------
"""
class OptimalTransportPath:
def __init__(self, sig_min: float = 1e-5) -> None:
self.sig_min = sig_min
def sample(self, x1: torch.Tensor, x0: torch.Tensor, t: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
t = t.expand_as(x1)
xt = x1 * t + (1 - (1 - self.sig_min) * t) * x0
vt = x1 - (1 - self.sig_min) * x0
return xt, vt
"""
-------------------------------------------------------------------------------
models
-------------------------------------------------------------------------------
"""
@dataclass
class MovieGenConfig:
version: str = "1.0"
in_channels: int = 16
n_layer: int = 2 # 48
n_head: int = 12 # 48
dim_head: int = 128
n_embd: int = 6144
ffn_dim: int = 16384 # 6144 * 4 * 2/3
# context_len: int = 8192 # (256 * 256 * 256) / [(8 * 8 * 8) * (1 * 2 * 2)]
max_frames: int = 256
spatial_resolution: int = 256
patch_k: Tuple[int, int, int] = (1, 2, 2)
norm_eps: float = 1e-5
dropout: float = 0.0
# flow matching related
# use kv cache?
# - max_gen_batch_size: int = 4
# - block_size: int = 8192
# - use_kv: bool = False
# use flashattention?
# flash: bool = False
def __init__(self, **kwargs):
for k, v in kwargs.items():
if hasattr(self, k):
setattr(self, k, v)
class MovieGen(nn.Module):
def __init__(self,
config: MovieGenConfig,
):
super().__init__()
self.context_len = (
config.max_frames * config.spatial_resolution ** 2) //\
((8 ** 3) * np.prod(config.patch_k))
# assert config.context_len == calc_ctx_len, \
# f"Context length is wrong. Set to {config.context_len}. " + \
# f"Should be {calc_ctx_len}"
self.config = config
self.patchifier = nn.Conv3d(in_channels=config.in_channels,
out_channels=config.n_embd,
kernel_size=config.patch_k,
stride=config.patch_k,
bias=True)
# self.patch_proj = nn.Sequential(
# nn.LayerNorm(config.in_channels),
# nn.Linear(config.in_channels, config.n_embd),
# nn.LayerNorm(config.n_embd),
# )
self.t_embedder = TimestepEmbedder(config.n_embd)
# NOTE: 8-compression from TAE
self.pos_embed_h = nn.Parameter(torch.randn(
config.spatial_resolution // (8 * config.patch_k[1]),
config.n_embd))
self.pos_embed_w = nn.Parameter(torch.randn(
config.spatial_resolution // (8 * config.patch_k[2]),
config.n_embd))
self.pos_embed_T = nn.Parameter(torch.randn(
config.max_frames // (8 * config.patch_k[0]),
config.n_embd))
print0("Initializing auxiliary models")
self.tae = TAE(TAEConfig())
self.tae.eval()
for p in self.tae.parameters():
p.requires_grad_(False)
print0("Initializing transformer backbone")
self.blocks = nn.ModuleList([
Block(config) for _ in range(config.n_layer)])
self.head = Head(config)
# I borrow the lm head from DiT instead of the Llama head
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patchifier like nn.Linear (instead of nn.Conv3d):
# this is done as in DiT
w = self.patchifier.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.patchifier.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.head.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.head.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.head.linear.weight, 0)
nn.init.constant_(self.head.linear.bias, 0)
def initialize_auxiliary_models(self,
metaclip_ckpt: Optional[Path],
tae_ckpt: Optional[Path]):
if metaclip_ckpt is not None:
self.text_encoder.from_pretrained(metaclip_ckpt)
if tae_ckpt is not None:
self.tae.from_pretrained(tae_ckpt)
@classmethod
def from_pretrained(self, ckpt: Path,
metaclip_ckpt: Path, tae_ckpt: Path):
model_args = MovieGenConfig()
checkpoint = torch.load(ckpt, map_location="cpu")
# save the default type
original_default_type = torch.get_default_dtype()
# much faster loading
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
model = MovieGen(model_args)
model.load_state_dict(checkpoint, strict=False)
# restore type
torch.set_default_tensor_type(torch.tensor(
[], dtype=original_default_type, device="cpu").type())
self.initialize_auxiliary_models(metaclip_ckpt, tae_ckpt)
return model
def configure_optimizers(self,
lr: float,
weight_decay: float,
betas: Tuple[float, float],):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups.
# Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay,
# all biases and layernorms don't.
# decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
# nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
params = [p for n, p in param_dict.items()]
optim_groups = [
{'params': params, 'weight_decay': weight_decay},
# {'params': decay_params, 'weight_decay': weight_decay},
# {'params': nodecay_params, 'weight_decay': 0.0}
]
optimizer = torch.optim.AdamW(optim_groups, lr=lr, betas=betas,
fused=True)
return optimizer
def step(self, x: torch.Tensor, x_1: torch.Tensor, t: torch.Tensor):
return t * x_1 + (1 - (1 - self.config.sig_min) * t) * x
def encode_frames(self, x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
x = self.tae.encode(x, mask) # [B, T, C, H, W]
return x.sample()
def decode_frames(self, x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
x = self.tae.decode(x, mask)
return x
def encode_prompts(self, prompts: List[str]) -> torch.Tensor:
tokens = self.text_encoder.tokenize(prompts, self.text_encoder.device)
x = self.text_encoder(tokens)
return x
def forward(self,
t: torch.Tensor,
x: torch.Tensor,
ctx: torch.Tensor,
mask: torch.Tensor,) -> torch.Tensor:
"""
Note that the TAE uses 8x compression and C=16
Note that there is conflating 't' representations:
- t is the timestep in the flow
- T is the frame count
- for simplicity, i will only use those notations
@parameters
- t: torch.Tensor (B,): timestep for flow
- x: torch.Tensor (B, T // 8, C, H // 8, W // 8):
TAE encoded input frames
- ctx: torch.Tensor (B,): context - i.e. prompts from Text Encoders
- mask: torch.Tensor (B,): attention/loss mask for padded frames
@returns
- vt: torch.Tensor (B, T // 8, C, H // 8, W // 8)
velocity flow prediction latent
"""
B, T, C, H, W = x.shape
x = x.permute(0, 2, 1, 3, 4) # [B, C, T, H, W]
x = self.patchifier(x)
x = torch.flatten(x, start_dim=2).permute(0, 2, 1) # [B, T*H*W, C]
# x = self.patch_proj(x) # [B, T*H*W, 6144]
# pos embeddeding pulled from DiT
assert (H < self.config.spatial_resolution and
W < self.config.spatial_resolution and
T < self.config.max_frames)
pos = torch.stack(torch.meshgrid((
torch.arange(H // self.config.patch_k[1], device=x.device),
torch.arange(W // self.config.patch_k[2], device=x.device)
), indexing='ij'), dim=-1)
pos = rearrange(pos, 'h w c -> (h w) c')
pos = repeat(pos, 'n d -> b n d', b=B)
# these are now [B, num patches]
h_indices, w_indices = pos.unbind(dim=-1)
pos_h = self.pos_embed_h[h_indices]
pos_w = self.pos_embed_w[w_indices]
T_indices = torch.arange(T, # self.config.max_temporal_seq_len,
device=x.device)
T_indices = repeat(T_indices, 'n -> b n', b=x.shape[0])
pos_T = self.pos_embed_T[T_indices]
# REVISIT: pad to the max seq length
# the thing is, the dataloader already pads at the batch level
# this will pad the remaining tokens, up to context len
# I might want to aggregate the padding logic to one spot
pad_len = self.context_len - x.shape[1]
x = F.pad(x, (0, 0, 0, pad_len))
# interleave for num patches
pad_len = self.context_len - (pos_T.shape[1] * pos_w.shape[1])
pos_T = torch.repeat_interleave(pos_T, pos_w.shape[1], dim=1)
pos_T = F.pad(pos_T, (0, 0, 0, pad_len))
pos_h = repeat(pos_h, 'b n d -> b (n t) d', t=T)
pos_h = F.pad(pos_h, (0, 0, 0, pad_len))
pos_w = repeat(pos_w, 'b n d -> b (n t) d', t=T)
pos_w = F.pad(pos_w, (0, 0, 0, pad_len))
assert (pos_h.shape[1] == x.shape[1] and
pos_h.shape[1] == pos_w.shape[1] and
pos_h.shape[1] == pos_T.shape[1] and
pos_h.shape[1] == self.context_len), \
"Pos emb and inputs don't match shape.\n" + \
f"pos_h: {pos_h.shape}, pos_w: {pos_w.shape}, pos_t: {pos_T.shape}"
pos_emb = pos_h + pos_w + pos_T
t_emb = self.t_embedder(t)
# masking operations
# Original mask is [B, T * 8], since T is the latent embedding here
# Each mask element corresponds to
# (spatial_res/8/2)^2 = 256 spatial patches
mask = mask.view(B, T, 8).any(dim=2) # [B, T/8]
# Each temporal position expands to 256 spatial positions
spatial_per_temporal = (
self.config.spatial_resolution // 8 // self.config.patch_k[1] *
self.config.spatial_resolution // 8 // self.config.patch_k[2]
)
# [B, T, 256]
mask = mask.unsqueeze(-1).repeat(1, 1, spatial_per_temporal)
mask = mask.view(B, -1) # [B, T * spatial_per_temporal]
# Pad to match the context length
mask = F.pad(mask, (0, pad_len)) # [B, context_len]
assert mask.shape[1] == self.context_len
for i, block in enumerate(self.blocks):
x = block(x, ctx, t_emb, pos_emb, mask=mask)
# REVISIT: what is this supposed to be? time emb?
x = self.head(x, t_emb) # [B, ctxlen, patch_h * patch_w * in_channels]
x = x.view(B,
self.config.max_frames // 8 // self.config.patch_k[0],
H // self.config.patch_k[1],
W // self.config.patch_k[2],
self.config.patch_k[0], # this isn't necessary
self.config.patch_k[1],
self.config.patch_k[2],
self.config.in_channels)
x = rearrange(
x, 'b T H W x y z C -> b (T x) C (H y) (W z)').contiguous()
# REVISIT: should I be doing this here
return x[:, :T]
"""
-------------------------------------------------------------------------------
dataloader
-------------------------------------------------------------------------------
"""
class Dataset:
def __init__(self, root: Path, T: int, image_only: bool,
size: int = 256, train: bool = True,):
self.train = train
self.image_only = image_only
self.T = T
self.files = list()
for ext in ('*.mp4', '*.avi', '*.mov', '*.mkv', '*.webm', '*.gif'):
self.files.extend(root.glob(ext))
self.files = sorted(self.files) # Sort for consistency
self.transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize((size, size)),
torchvision.transforms.PILToTensor(),
torchvision.transforms.ConvertImageDtype(torch.float32),
torchvision.transforms.Normalize([0.5], [0.5]),
])
def __len__(self):
return len(self.files)
def load_video(self, fname):
vidcap = cv2.VideoCapture(fname)
ret, x = vidcap.read()
x = Image.fromarray(cv2.cvtColor(x, cv2.COLOR_BGR2RGB))
x = self.transforms(x)[None, :]
while ret:
ret, frame = vidcap.read()
if ret:
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
x = torch.cat([x, self.transforms(frame)[None, :]])
return x
def __getitem__(self, index):
index = 0
mask = torch.ones([self.T], dtype=torch.int)
video = self.load_video(self.files[index])
vlen = video.shape[0]
if self.image_only:
id = random.randint(0, vlen - 1) if self.train else 0
id = 0
frame = video[id]
zero_pad = torch.zeros(self.T - 1, *frame.shape,
dtype=frame.dtype)
x = torch.cat([frame[None, :], zero_pad], dim=0)
mask[1:] = 0
else:
id = 0
if self.train:
id = random.randint(0, max(vlen - self.T - 1, 0))
x = video[id:id + self.T]
if x.shape[0] < self.T:
zero_pad = torch.zeros(self.T - x.shape[0],
*x.shape[1:],
dtype=frame.dtype)
x = torch.cat([x, zero_pad], dim=0)
mask[x.shape[1]:] = 0
return x, ["video"] * x.shape[0], mask
"""
-------------------------------------------------------------------------------
args
-------------------------------------------------------------------------------
"""
parser = argparse.ArgumentParser()
# io
# yes you can use parser types like this
parser.add_argument("--ul2-ckpt", type=asspath, required=False)
parser.add_argument("--byt5-ckpt", type=asspath, required=False)
parser.add_argument("--metaclip-ckpt", type=asspath, required=False)
parser.add_argument("--tae-ckpt", type=asspath, required=False)
parser.add_argument("--output-dir", type=mkpath, default="")
parser.add_argument("--train-dir", type=asspath, default="dev/data/train-smol")
parser.add_argument("--val-dir", type=asspath, default="dev/data/val-smol")
# checkpointing
parser.add_argument("--ckpt", type=asspath, required=False)
parser.add_argument("--ckpt-from-ldm", type=int, default=0, choices=[0, 1])
parser.add_argument("--resume", type=int, default=0, choices=[0, 1])
parser.add_argument("--ckpt-freq", type=int, default=-1)
parser.add_argument("--device", type=str, default="cuda")
# optimization
parser.add_argument("--lr", type=float, default=1e-5)
parser.add_argument("--weight-decay", type=float, default=0.0)
parser.add_argument("--grad-clip", type=float, default=1.0)
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--max-frames", type=int, default=32)
parser.add_argument("--resolution", type=int, default=64)
parser.add_argument("--sig-min", type=float, default=1e-5)
parser.add_argument("--image-only", type=int, default=0)
parser.add_argument("--num-iterations", type=int, default=10)
parser.add_argument("--val-loss-every", type=int, default=0)
parser.add_argument("--val-max-steps", type=int, default=20)
parser.add_argument("--overfit-batch", default=1, type=int)
parser.add_argument("--inference-only", default=0, type=int, choices=[0, 1])
parser.add_argument("--verbose-loss", default=0, type=int, choices=[0, 1])
parser.add_argument("--seed", default=420, type=int)
# memory management
parser.add_argument("--dtype", type=str, default="float32")
parser.add_argument("--compile", default=0, type=int)
if __name__ == "__main__":
os.environ["TOKENIZERS_PARALLELISM"] = "false"
signal.signal(signal.SIGINT, signal_handler)
args = parser.parse_args()
# args error checking
assert args.dtype in {"float32"}
train_logfile, val_logfile = None, None
if args.output_dir:
train_logfile = args.output_dir / "train.log"
val_logfile = args.output_dir / "val.log"
if args.resume == 0:
open(train_logfile, 'w').close()
open(val_logfile, 'w').close()
else:
args.output_dir = mkpath("tmp")
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
assert torch.cuda.is_available(), "We need CUDA for DDP"
init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0
else:
ddp_rank = 0
ddp_local_rank = 0
ddp_world_size = 1
master_process = True
device = torch.device(args.device)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
config = MovieGenConfig()
config.spatial_resolution = args.resolution
config.max_frames = args.max_frames
model = MovieGen(config)
model.initialize_auxiliary_models(metaclip_ckpt=args.metaclip_ckpt,
tae_ckpt=args.tae_ckpt)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel()
for p in model.parameters() if p.requires_grad)
print0(f"Total Parameters: {total_params:,}")
print0(f"Trainable Parameters: {trainable_params:,}")
model.train()
if args.compile:
model = torch.compile(model)
text_encoder = TextEncoder(TextEncoderConfig())
text_encoder.eval()
for p in text_encoder.parameters():
p.requires_grad_(False)
model.to(device)
trainset = Dataset(args.train_dir, T=args.max_frames,
image_only=args.image_only, size=args.resolution)
valset = Dataset(args.val_dir, T=args.max_frames,
image_only=args.image_only,
size=args.resolution, train=False)
train_sampler = DistributedSampler(trainset, shuffle=True) if ddp else None
val_sampler = DistributedSampler(valset) if ddp else None
train_loader = DataLoader(trainset, shuffle=(train_sampler is None),
num_workers=4, sampler=train_sampler)
val_loader = DataLoader(valset, shuffle=False,
num_workers=4, sampler=val_sampler)
if ddp:
model = DDP(model, device_ids=[ddp_local_rank],
find_unused_parameters=True)
unwrapped_model = model.module if ddp else model
optimizer = unwrapped_model.configure_optimizers(
lr=args.lr, weight_decay=args.weight_decay,
betas=(0.5, 0.9))
torch.cuda.reset_peak_memory_stats()
timings = list()
if args.inference_only:
print0("Starting inference only.")
else:
print0("Starting training.")
start_step = 0
if args.resume == 1:
start_step = torch.load(args.ckpt)["step"]
trainset_size = len(trainset) // ddp_world_size if ddp else len(trainset)
path = OptimalTransportPath(sig_min=args.sig_min)
for step in range(start_step, args.num_iterations):
if step % trainset_size == 0:
train_iter = iter(train_loader)
if train_sampler is not None:
train_sampler.set_epoch(step % len(trainset))
t0 = time.time()
last_step = (step == args.num_iterations - 1)
model.train()
# --------------- TRAINING SECTION BEGIN -----------------
optimizer.zero_grad(set_to_none=True)
# fetch a batch
x, prompts, mask = next(train_iter)
x, mask = x.to(device), mask.to(device)
prompt_embeds = text_encoder.tokenize("video", "cpu")
prompt_embeds = text_encoder(prompt_embeds).to(device)
prompt_embeds = prompt_embeds.expand(x.shape[0], *prompt_embeds.shape)
x1 = model.encode_frames(x, mask)
x0 = torch.randn_like(x1, device=device)
t = torch.rand(x1.shape[0], device=device)
xt, vt = path.sample(x1, x0, t)
v_model = model(t, xt, prompt_embeds, mask)
loss = torch.pow(v_model - vt, 2).mean()
frames = model.decode_frames(x1, mask)
for i, frame in enumerate(frames[0]):
torchvision.transforms.ToPILImage()(
frame * 0.5 + 0.5).save(args.output_dir / f"test_image_{i}.png")
loss.backward()
# if ddp:
# dist.all_reduce(loss, op=dist.ReduceOp.AVG)
norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip)
# step the optimizer
optimizer.step()
torch.cuda.synchronize()
t1 = time.time()
print0(f"""step {step+1:4d}/{args.num_iterations} | \
train loss {loss.item():.6f} | \
norm {norm:.4f} | \
""")
if master_process and train_logfile is not None:
with open(train_logfile, "a") as f:
f.write(f"{step},")
f.write(f"train/loss,{loss.item()},")
f.write("\n")
# keep track of smooth timings, last 20 iterations
if step > 0 and step > args.num_iterations - 20:
timings.append(t1 - t0)
if master_process and step > 0 and args.ckpt_freq > 0 and step % args.ckpt_freq == 0:
torch.save({"step": step, "state_dict": unwrapped_model.state_dict()},
args.output_dir / f"moviegen_{step}.ckpt")
# print the average of the last 20 timings, to get something smooth-ish
timings = timings[-20:]
print0(f"final {len(timings)} iters avg: {np.mean(timings)*1000:.3f}ms")
print0(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB") # NOQA
if master_process:
torch.save({"step": step, "state_dict": model.state_dict()},
args.output_dir / "moviegen_last.ckpt")
model.eval()
with torch.no_grad():
# sample using midpoint solver
xt = torch.rand(1, 1, 16, args.resolution // 8, args.resolution // 8,
dtype=torch.float32, device=device)
T = torch.linspace(0, 1, 51, device=device) # sample times
prompt_embeds = text_encoder.tokenize("video", "cpu")
prompt_embeds = text_encoder(prompt_embeds).to(device)
prompt_embeds = prompt_embeds.expand(
xt.shape[0], *prompt_embeds.shape)
mask = torch.zeros(1, 8, dtype=torch.int, device=device)
mask[0] = 1
odefunc = partial(model.forward, ctx=prompt_embeds, mask=mask)
sol = list()
for i in range(50):
t_start = T[i].expand(xt.shape[0])
t_end = T[i + 1].expand(xt.shape[0])
xt = xt + (t_end - t_start)[..., None, None, None] * odefunc(
t=t_start + (t_end - t_start) /
2, x=xt + odefunc(x=xt, t=t_start) * ((t_end - t_start) / 2)[..., None, None, None])
sol.append(xt)
num_timesteps = len(sol)
frames = model.decode_frames(sol[-1], mask)
for i, frame in enumerate(frames[0]):
torchvision.transforms.ToPILImage()(
frame * 0.5 + 0.5).save(args.output_dir / f"final_image_{i}.png")
cleanup() # -------------------------------------------------------------------------