-
Notifications
You must be signed in to change notification settings - Fork 248
/
run_KDD_18_MCRec.py
322 lines (223 loc) · 14 KB
/
run_KDD_18_MCRec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 22/11/17
@author: Maurizio Ferrari Dacrema
"""
from Recommender_import_list import *
from Conferences.KDD.MCRec_our_interface.MCRecRecommenderWrapper import MCRecML100k_RecommenderWrapper
from ParameterTuning.SearchSingleCase import SearchSingleCase
from ParameterTuning.SearchAbstractClass import SearchInputRecommenderArgs
from ParameterTuning.run_parameter_search import runParameterSearch_Collaborative, runParameterSearch_Content, runParameterSearch_Hybrid
import os, traceback, argparse
import numpy as np
from Utils.ResultFolderLoader import ResultFolderLoader, generate_latex_hyperparameters
from Utils.assertions_on_data_for_experiments import assert_implicit_data, assert_disjoint_matrices
from Utils.plot_popularity import plot_popularity_bias, save_popularity_statistics
def read_data_split_and_search(dataset_name,
flag_baselines_tune = False,
flag_DL_article_default = False, flag_DL_tune = False,
flag_print_results = False):
from Conferences.KDD.MCRec_our_interface.Movielens100K.Movielens100KReader import Movielens100KReader
result_folder_path = "result_experiments/{}/{}_{}/".format(CONFERENCE_NAME, ALGORITHM_NAME, dataset_name)
if dataset_name == "movielens100k":
dataset = Movielens100KReader(result_folder_path)
URM_train = dataset.URM_DICT["URM_train"].copy()
URM_validation = dataset.URM_DICT["URM_validation"].copy()
URM_test = dataset.URM_DICT["URM_test"].copy()
URM_test_negative = dataset.URM_DICT["URM_test_negative"].copy()
# Ensure IMPLICIT data and DISJOINT sets
assert_implicit_data([URM_train, URM_validation, URM_test, URM_test_negative])
assert_disjoint_matrices([URM_train, URM_validation, URM_test, URM_test_negative])
# If directory does not exist, create
if not os.path.exists(result_folder_path):
os.makedirs(result_folder_path)
algorithm_dataset_string = "{}_{}_".format(ALGORITHM_NAME, dataset_name)
plot_popularity_bias([URM_train + URM_validation, URM_test],
["Training data", "Test data"],
result_folder_path + algorithm_dataset_string + "popularity_plot")
save_popularity_statistics([URM_train + URM_validation + URM_test, URM_train + URM_validation, URM_test],
["Full data", "Training data", "Test data"],
result_folder_path + algorithm_dataset_string + "popularity_statistics")
from Base.Evaluation.Evaluator import EvaluatorNegativeItemSample
evaluator_validation = EvaluatorNegativeItemSample(URM_validation, URM_test_negative, cutoff_list=[10])
evaluator_test = EvaluatorNegativeItemSample(URM_test, URM_test_negative, cutoff_list=[10])
collaborative_algorithm_list = [
Random,
TopPop,
UserKNNCFRecommender,
ItemKNNCFRecommender,
P3alphaRecommender,
RP3betaRecommender,
PureSVDRecommender,
NMFRecommender,
IALSRecommender,
MatrixFactorization_BPR_Cython,
MatrixFactorization_FunkSVD_Cython,
EASE_R_Recommender,
SLIM_BPR_Cython,
SLIMElasticNetRecommender,
]
metric_to_optimize = "PRECISION"
n_cases = 50
n_random_starts = 15
runParameterSearch_Collaborative_partial = partial(runParameterSearch_Collaborative,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation_earlystopping = evaluator_validation,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
n_cases = n_cases,
n_random_starts = n_random_starts)
if flag_baselines_tune:
for recommender_class in collaborative_algorithm_list:
try:
runParameterSearch_Collaborative_partial(recommender_class)
except Exception as e:
print("On recommender {} Exception {}".format(recommender_class, str(e)))
traceback.print_exc()
################################################################################################
###### Content Baselines
for ICM_name, ICM_object in dataset.ICM_DICT.items():
try:
runParameterSearch_Content(ItemKNNCBFRecommender,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
ICM_name = ICM_name,
ICM_object = ICM_object.copy(),
n_cases = n_cases,
n_random_starts = n_random_starts)
except Exception as e:
print("On CBF recommender for ICM {} Exception {}".format(ICM_name, str(e)))
traceback.print_exc()
################################################################################################
###### Hybrid
for ICM_name, ICM_object in dataset.ICM_DICT.items():
try:
runParameterSearch_Hybrid(ItemKNN_CFCBF_Hybrid_Recommender,
URM_train = URM_train,
URM_train_last_test = URM_train + URM_validation,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = result_folder_path,
parallelizeKNN = False,
allow_weighting = True,
resume_from_saved = True,
ICM_name = ICM_name,
ICM_object = ICM_object.copy(),
n_cases = n_cases,
n_random_starts = n_random_starts)
except Exception as e:
print("On recommender {} Exception {}".format(ItemKNN_CFCBF_Hybrid_Recommender, str(e)))
traceback.print_exc()
################################################################################################
######
###### DL ALGORITHM
######
if flag_DL_article_default:
if dataset_name == "movielens100k":
"""
The code provided in the original repository of MCRec can be used only for the original data.
Here I am passing to the Wrapper the URM_train matrix that is only required for its shape,
the training will be done using the preprocessed data provided in the original repository
"""
from Conferences.KDD.MCRec_github.code.Dataset import Dataset
original_dataset_reader = Dataset('Conferences/KDD/MCRec_github/data/' + 'ml-100k')
MCRec_article_hyperparameters = {
"epochs": 200,
"latent_dim": 128,
"reg_latent": 0,
"layers": [512, 256, 128, 64],
"reg_layes": [0 ,0, 0, 0],
"learning_rate": 1e-3,
"batch_size": 256,
"num_negatives": 4,
}
MCRec_earlystopping_hyperparameters = {
"validation_every_n": 5,
"stop_on_validation": True,
"evaluator_object": evaluator_validation,
"lower_validations_allowed": 5,
"validation_metric": metric_to_optimize
}
parameterSearch = SearchSingleCase(MCRecML100k_RecommenderWrapper,
evaluator_validation=evaluator_validation,
evaluator_test=evaluator_test)
recommender_input_args = SearchInputRecommenderArgs(
CONSTRUCTOR_POSITIONAL_ARGS = [URM_train, original_dataset_reader],
FIT_KEYWORD_ARGS = MCRec_earlystopping_hyperparameters)
recommender_input_args_last_test = recommender_input_args.copy()
recommender_input_args_last_test.CONSTRUCTOR_POSITIONAL_ARGS[0] = URM_train + URM_validation
parameterSearch.search(recommender_input_args,
recommender_input_args_last_test = recommender_input_args_last_test,
fit_hyperparameters_values=MCRec_article_hyperparameters,
output_folder_path = result_folder_path,
resume_from_saved = True,
output_file_name_root = MCRecML100k_RecommenderWrapper.RECOMMENDER_NAME)
################################################################################################
######
###### PRINT RESULTS
######
if flag_print_results:
n_test_users = np.sum(np.ediff1d(URM_test.indptr)>=1)
file_name = "{}..//{}_{}_".format(result_folder_path, ALGORITHM_NAME, dataset_name)
ICM_names_to_report_list = list(dataset.ICM_DICT.keys())
result_loader = ResultFolderLoader(result_folder_path,
base_algorithm_list = None,
other_algorithm_list = [MCRecML100k_RecommenderWrapper],
KNN_similarity_list = KNN_similarity_to_report_list,
ICM_names_list = ICM_names_to_report_list,
UCM_names_list = None)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("article_metrics"),
metrics_list = ["PRECISION", "RECALL", "NDCG"],
cutoffs_list = [10],
table_title = None,
highlight_best = True)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("all_metrics"),
metrics_list = ["PRECISION", "RECALL", "MAP_MIN_DEN", "MRR", "NDCG", "F1", "HIT_RATE", "ARHR_ALL_HITS",
"NOVELTY", "DIVERSITY_MEAN_INTER_LIST", "DIVERSITY_HERFINDAHL", "COVERAGE_ITEM", "DIVERSITY_GINI", "SHANNON_ENTROPY"],
cutoffs_list = [10],
table_title = None,
highlight_best = True)
result_loader.generate_latex_time_statistics(file_name + "{}_latex_results.txt".format("time"),
n_evaluation_users=n_test_users,
table_title = None)
from functools import partial
if __name__ == '__main__':
ALGORITHM_NAME = "MCRec"
CONFERENCE_NAME = "KDD"
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--baseline_tune', help="Baseline hyperparameter search", type = bool, default = False)
parser.add_argument('-a', '--DL_article_default', help="Train the DL model with article hyperparameters", type = bool, default = False)
parser.add_argument('-p', '--print_results', help="Print results", type = bool, default = True)
input_flags = parser.parse_args()
print(input_flags)
KNN_similarity_to_report_list = ["cosine", "dice", "jaccard", "asymmetric", "tversky"]
dataset_list = ["movielens100k"]
for dataset_name in dataset_list:
read_data_split_and_search(dataset_name,
flag_baselines_tune=input_flags.baseline_tune,
flag_DL_article_default= input_flags.DL_article_default,
flag_print_results = input_flags.print_results,
)
if input_flags.print_results:
generate_latex_hyperparameters(result_folder_path ="result_experiments/{}/".format(CONFERENCE_NAME),
algorithm_name= ALGORITHM_NAME,
experiment_subfolder_list = dataset_list,
ICM_names_to_report_list = ["ICM_genre"],
other_algorithm_list = [MCRecML100k_RecommenderWrapper],
KNN_similarity_to_report_list = KNN_similarity_to_report_list,
split_per_algorithm_type = True)