-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlanguage_vectors_2019.py
105 lines (87 loc) · 2.97 KB
/
language_vectors_2019.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd
from bert_serving.client import BertClient
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.stem import *
import json
import numpy as np
def read_titles(path):
"""Load the captions into a dataframe"""
stemmer = PorterStemmer()
vn = []
cap = []
df = pd.DataFrame()
with open(path) as f:
for line in f:
pairs = line.split()
vn.append(pairs[0])
#singles = [stemmer.stem(pairs[1])]
cap.append(pairs[1])
df['video']=vn
df[['video', 'poubelle']] = df['video'].str.split(".webm", expand=True, )
df[['poubelle2', 'video']] = df['video'].str.split("video", expand=True, )
df['caption']=cap
return df
def Bert_format (path):
# Creating train and dev dataframes according to BERT
"""Load the captions into a dataframe"""
vn = []
cap = []
df = pd.DataFrame()
with open(path) as f:
for line in f:
pairs = line.split()
vn.append(pairs[0])
cap.append(pairs[1])
df['video'] = vn
df['caption'] = cap
df['alpha'] =['a']*len(cap)
return df
def read_alto_captions(path):
df = pd.read_csv(path, names=['caption'])
df[['videos','caption_alto']] = df.caption.str.split("A",expand=True,)
df[['trash','video']]=df.videos.str.split(" ",expand=True,)
df['video']=df['video'].str.strip("0")
df[['video','poubelle']] =df['video'].str.split(":83",expand=True,)
df['caption_alto'].fillna('a',inplace=True)
#print(df['video'])
return df[['video','caption_alto']]
def alto_and_titles(alto,titles):
#print(titles)
#df = pd.concat([alto, titles], axis=1, join='inner')
#print(alto)
#print(titles)
df=pd.merge(alto, titles, on='video')
#print(df)
#print(df['videos'])
df2 = pd.DataFrame()
df2['caption']= df[['caption_alto', 'caption']].apply(lambda x: ' '.join(x), axis=1)
df2['video']=df['video']
print(df2['caption'][3])
return df2
def adding_danny_to_rest(alto_and_titles,danny_captions):
df=pd.merge(danny_captions,alto_and_titles, on="video")
#print(df['videos'])
df2 = pd.DataFrame()
df2['caption']= df[['caption', 'captions_danny']].apply(lambda x: ''.join(x), axis=1)
df2['video'] = df['video']
print(df2['caption'][3])
return df2
def getting_Bertclient_vectors(column):
bc = BertClient()
vectors= bc.encode(column.tolist())
#print(vectors)
df_vec = pd.DataFrame(vectors)
df_vec.to_csv("bert_alto.csv")
return df_vec
def obtaining_BOW_vectors(df):
#cv = CountVectorizer(ngram_range=(2,4),stop_words='english',max_features=20000)
cv = CountVectorizer(stop_words='english')
X_CV = cv.fit_transform(df['caption'])
X= X_CV.toarray()
return X
def obtaining_tfidf_vectors(df):
cv = TfidfVectorizer()
X_CV = cv.fit_transform(df['caption'])
X= X_CV.toarray()
return X