forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 2
/
dense_retriever.py
288 lines (251 loc) · 10.2 KB
/
dense_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright GC-DPR authors.
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Command line tool to get dense results and validate them
"""
import argparse
import csv
import glob
import gzip
import json
import logging
import pickle
import time
from typing import Dict, Iterator, List, Tuple
import numpy as np
import paddle
from biencoder_base_model import BiEncoder
from faiss_indexer import DenseFlatIndexer, DenseHNSWFlatIndexer, DenseIndexer
from NQdataset import BertTensorizer
from paddle import Tensor as T
from paddle import nn
from qa_validation import calculate_matches
from paddlenlp.transformers.bert.modeling import BertModel
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if logger.hasHandlers():
logger.handlers.clear()
console = logging.StreamHandler()
logger.addHandler(console)
class DenseRetriever(object):
"""
Does passage retrieving over the provided index and question encoder
"""
def __init__(self, question_encoder: nn.Layer, batch_size: int, tensorizer: BertTensorizer, index: DenseIndexer):
self.question_encoder = question_encoder
self.batch_size = batch_size
self.tensorizer = tensorizer
self.index = index
def generate_question_vectors(self, questions: List[str]) -> T:
n = len(questions)
bsz = self.batch_size
query_vectors = []
self.question_encoder.eval()
with paddle.no_grad():
for j, batch_start in enumerate(range(0, n, bsz)):
batch_token_tensors = [
self.tensorizer.text_to_tensor(q) for q in questions[batch_start : batch_start + bsz]
]
q_ids_batch = paddle.stack(batch_token_tensors, axis=0)
q_seg_batch = paddle.zeros_like(q_ids_batch)
out = self.question_encoder.get_question_pooled_embedding(q_ids_batch, q_seg_batch)
query_vectors.extend(out)
if len(query_vectors) % 100 == 0:
logger.info("Encoded queries %d", len(query_vectors))
query_tensor = paddle.to_tensor(query_vectors)
logger.info("Total encoded queries tensor %s", query_tensor.shape[0])
assert query_tensor.shape[0] == len(questions)
return query_tensor
def get_top_docs(self, query_vectors: np.array, top_docs: int = 100) -> List[Tuple[List[object], List[float]]]:
"""
Does the retrieval of the best matching passages given the query vectors batch
:param query_vectors:
:param top_docs:
:return:
"""
time0 = time.time()
results = self.index.search_knn(query_vectors, top_docs)
logger.info("index search time: %f sec.", time.time() - time0)
return results
def parse_qa_csv_file(location) -> Iterator[Tuple[str, List[str]]]:
with open(location) as ifile:
reader = csv.reader(ifile, delimiter="\t")
for row in reader:
question = row[0]
answers = eval(row[1])
yield question, answers
def validate(
passages: Dict[object, Tuple[str, str]],
answers: List[List[str]],
result_ctx_ids: List[Tuple[List[object], List[float]]],
workers_num: int,
match_type: str,
) -> List[List[bool]]:
match_stats = calculate_matches(passages, answers, result_ctx_ids, workers_num, match_type)
top_k_hits = match_stats.top_k_hits
logger.info("Validation results: top k documents hits %s", top_k_hits)
top_k_hits = [v / len(result_ctx_ids) for v in top_k_hits]
logger.info("Validation results: top k documents hits accuracy %s", top_k_hits)
return match_stats.questions_doc_hits
def load_passages(ctx_file: str) -> Dict[object, Tuple[str, str]]:
docs = {}
logger.info("Reading data from: %s", ctx_file)
if ctx_file.endswith(".gz"):
with gzip.open(ctx_file, "rt") as tsvfile:
reader = csv.reader(
tsvfile,
delimiter="\t",
)
# file format: doc_id, doc_text, title
for row in reader:
if row[0] != "id":
docs[row[0]] = (row[1], row[2])
else:
with open(ctx_file) as tsvfile:
reader = csv.reader(
tsvfile,
delimiter="\t",
)
# file format: doc_id, doc_text, title
for row in reader:
if row[0] != "id":
docs[row[0]] = (row[1], row[2])
return docs
def save_results(
passages: Dict[object, Tuple[str, str]],
questions: List[str],
answers: List[List[str]],
top_passages_and_scores: List[Tuple[List[object], List[float]]],
per_question_hits: List[List[bool]],
out_file: str,
):
# join passages text with the result ids, their questions and assigning has|no answer labels
merged_data = []
assert len(per_question_hits) == len(questions) == len(answers)
for i, q in enumerate(questions):
q_answers = answers[i]
results_and_scores = top_passages_and_scores[i]
hits = per_question_hits[i]
docs = [passages[doc_id] for doc_id in results_and_scores[0]]
scores = [str(score) for score in results_and_scores[1]]
ctxs_num = len(hits)
merged_data.append(
{
"question": q,
"answers": q_answers,
"ctxs": [
{
"id": results_and_scores[0][c],
"title": docs[c][1],
"text": docs[c][0],
"score": scores[c],
"has_answer": hits[c],
}
for c in range(ctxs_num)
],
}
)
with open(out_file, "w") as writer:
writer.write(json.dumps(merged_data, indent=4) + "\n")
logger.info("Saved results * scores to %s", out_file)
def iterate_encoded_files(vector_files: list) -> Iterator[Tuple[object, np.array]]:
for i, file in enumerate(vector_files):
logger.info("Reading file %s", file)
with open(file, "rb") as reader:
doc_vectors = pickle.load(reader)
for doc in doc_vectors:
db_id, doc_vector = doc
yield db_id, doc_vector
def main(args):
tensorizer = BertTensorizer()
question_model = BertModel.from_pretrained(args.que_model_path)
context_model = BertModel.from_pretrained(args.con_model_path)
model = BiEncoder(question_encoder=question_model, context_encoder=context_model)
model.eval()
if args.hnsw_index:
index = DenseHNSWFlatIndexer(768, args.index_buffer)
else:
index = DenseFlatIndexer(768, args.index_buffer)
retriever = DenseRetriever(model, args.batch_size, tensorizer, index)
# get questions & answers
questions = []
question_answers = []
for ds_item in parse_qa_csv_file(args.qa_file):
question, answers = ds_item
questions.append(question)
question_answers.append(answers)
questions_tensor = retriever.generate_question_vectors(questions)
# index all passages
ctx_files_pattern = args.encoded_ctx_file
input_paths = glob.glob(ctx_files_pattern)
logger.info("Reading all passages data from files: %s", input_paths)
retriever.index.index_data(input_paths)
# get top k results
top_ids_and_scores = retriever.get_top_docs(questions_tensor.numpy(), args.n_docs)
all_passages = load_passages(args.ctx_file)
if len(all_passages) == 0:
raise RuntimeError("No passages data found. Please specify ctx_file param properly.")
questions_doc_hits = validate(
all_passages, question_answers, top_ids_and_scores, args.validation_workers, args.match
)
if args.out_file:
save_results(all_passages, questions, question_answers, top_ids_and_scores, questions_doc_hits, args.out_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--qa_file",
required=True,
type=str,
default=None,
help="Question and answers file of the format: question \\t ['answer1','answer2', ...]",
)
parser.add_argument(
"--ctx_file",
required=True,
type=str,
default=None,
help="All passages file in the tsv format: id \\t passage_text \\t title",
)
parser.add_argument(
"--encoded_ctx_file",
type=str,
default=None,
help="Glob path to encoded passages (from generate_dense_embeddings tool)",
)
parser.add_argument("--out_file", type=str, default=None, help="output .json file path to write results to ")
parser.add_argument(
"--match", type=str, default="string", choices=["regex", "string"], help="Answer matching logic type"
)
parser.add_argument("--n-docs", type=int, default=200, help="Amount of top docs to return")
parser.add_argument(
"--validation_workers", type=int, default=16, help="Number of parallel processes to validate results"
)
parser.add_argument("--batch_size", type=int, default=32, help="Batch size for question encoder forward pass")
parser.add_argument(
"--index_buffer", type=int, default=50000, help="Temporal memory data buffer size (in samples) for indexer"
)
parser.add_argument(
"--hnsw_index", action="store_true", help="If enabled, use inference time efficient HNSW index"
)
parser.add_argument("--que_model_path", required=True, type=str)
parser.add_argument("--con_model_path", required=True, type=str)
args = parser.parse_args()
main(args)