-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbkgen.py
107 lines (94 loc) · 2.35 KB
/
bkgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import cv2 as cv
import numpy as np
import alakazam as zz
from alakazam import _1, _2, _3
import sys
# BGR because OpenCV is funny.
TRANSLATION_TABLE = {
b'0' : (0, 0, 0),
b'1' : (1, 0, 0),
b'2' : (2, 0, 0),
b'3' : (3, 0, 0),
b'4' : (4, 0, 0),
b'5' : (5, 0, 0),
b'6' : (6, 0, 0),
b'7' : (7, 0, 0),
b'8' : (8, 0, 0),
b'9' : (9, 0, 0),
b'a' : (0, 1, 0),
b'b' : (1, 1, 0),
b'c' : (2, 1, 0),
b'd' : (3, 1, 0),
b'e' : (4, 1, 0),
b'f' : (5, 1, 0),
b'>' : (0, 5, 0),
b'^' : (1, 5, 0),
b'v' : (2, 5, 0),
b'<' : (3, 5, 0),
b'_' : (4, 5, 0),
b'|' : (5, 5, 0),
b'[' : (6, 5, 0),
b']' : (7, 5, 0),
b'x' : (8, 5, 0),
b'w' : (9, 5, 0),
b'?' : (0, 6, 0),
b',' : (0, 0, 1),
b'.' : (1, 0, 1),
b'&' : (2, 0, 1),
b'~' : (3, 0, 1),
b'+' : (0, 5, 1),
b'-' : (1, 5, 1),
b'*' : (2, 5, 1),
b'/' : (3, 5, 1),
b'%' : (4, 5, 1),
b':' : (5, 7, 1),
b'\\': (6, 7, 1),
b'#' : (0, 0, 2),
b'j' : (1, 0, 2),
b'k' : (2, 0, 2),
b'"' : (6, 5, 2),
b'g' : (0, 0, 3),
b'p' : (1, 0, 3),
b'\'': (2, 0, 3),
b's' : (3, 0, 3),
b'!' : (0, 5, 3),
b'`' : (1, 5, 3),
b'{' : (0, 0, 4),
b'}' : (1, 0, 4),
b'u' : (2, 0, 4),
b'n' : (0, 0, 5),
b'$' : (1, 0, 5),
b'z' : (4, 5, 5),
b' ' : (5, 5, 5),
b'q' : (8, 9, 9),
b'@' : (9, 9, 9),
}
def lookup(ch):
return np.array(TRANSLATION_TABLE[ch])
lookup = np.vectorize(lookup, signature='()->(3)')
def pad_right(s, n):
return s + ' ' * max(0, n - len(s))
image_filename = sys.argv[1]
code_filename = sys.argv[2]
with open(code_filename) as f:
file_data = []
for line in f:
line = line.rstrip("\n")
file_data.append(line)
max_len = zz.of(file_data).map(len).max()
befunge_array = (zz.of(file_data)
.map(lambda s: pad_right(s, max_len))
.map(list)
.list())
befunge_array = np.array(befunge_array, dtype=np.string_)
befunge_array = lookup(befunge_array)
image = cv.imread(image_filename)
zero_data = np.zeros_like(image)
zero_data += 5
zero_data[:befunge_array.shape[0], :befunge_array.shape[1], :] = befunge_array
befunge_array = zero_data
# Clear the image's last digit data
image = image - image % 10
# Then add in the Befunge data
image += befunge_array
cv.imwrite(image_filename, image)