-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem154.eg
61 lines (48 loc) · 1.29 KB
/
problem154.eg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
p-adic-valuation(var n, p) =
var result = 0
while n mod p == 0:
n /= p
result += 1
result
;; Representation of a number as a product of a power of 2 and a power
;; of 5. Other primes are ignored.
class Num:
constructor(@two, @five) =
pass
mul(that) =
Num(@two + that.two, @five + that.five)
div(that) =
Num(@two - that.two, @five - that.five)
divides(that) =
let result = that.div(this)
result.two >= 0 and result.five >= 0
static:
from-int(integer) =
Num(p-adic-valuation(integer, 2), p-adic-valuation(integer, 5))
ONE = Num(0, 0)
let LIMIT = 200000
;; Precompute all the factorials into one big table.
let FACTORIALS = {0 = Num.ONE}
var acc = Num.ONE
1..LIMIT each i ->
acc = acc.mul(Num.from-int(i))
FACTORIALS[i] = acc
;; 10^12
let TARGET = Num(12, 12)
let NUMERATOR = FACTORIALS[LIMIT]
var result-count = 0
0..LIMIT each k1 ->
k1..LIMIT each k2 ->
let k3 = LIMIT - k1 - k2
if k3 < k2:
break
let value = NUMERATOR.div(FACTORIALS[k1].mul(FACTORIALS[k2]).mul(FACTORIALS[k3]))
if TARGET.divides(value):
;; Found a solution, count distinct permutations of it.
if k1 == k3:
result-count += 1
elif k1 == k2 or k2 == k3:
result-count += 3
else:
result-count += 6
print result-count