-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathPyReweighting-1D.py
executable file
·561 lines (482 loc) · 19.8 KB
/
PyReweighting-1D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#! /usr/bin/env python
## Required Software:
# Python: https://www.python.org/downloads/
# NumPy and SciPy: http://www.scipy.org/scipylib/download.html
# matplotlib: http://matplotlib.org/downloads.html
import math
import scipy
import scipy.stats as stats
import numpy as np
import sys
import matplotlib.pyplot as plt
import csv
from argparse import ArgumentParser
from scipy.optimize import curve_fit
## from scipy.optimize import *
print ("============================================================")
print ("PyReweighting: Python scripts used to reweight accelerated molecular dynamics simulations.")
print (" ")
print ("Authors: Yinglong Miao <[email protected]>")
print (" Bill Sinko <[email protected]>")
print ("\n\
Copyright <2014-2019> <Yinglong Miao and William Sinko> \n\
\n\
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"PyReweighting\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following citation: \n\
\n\
Miao Y, Sinko W, Pierce L, Bucher D, Walker RC, McCammon JA (2014) Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J Chemical Theory and Computation. 10(7): 2677-2689.")
print (" ")
###########MAIN
def main():
## Set control parameters
plt_figs = 0
args = cmdlineparse()
data=loadfiletoarray(args.input)
rows = len(data[:])
weights,dV = weightparse(rows, args)
if args.disc:
discX=float(args.disc)
else :
discX = 6
if args.Xdim:
binsX= assignbins(args.Xdim, discX)
else:
max_data = discX * (int(np.amax(data)/discX) + 1)
min_data = discX * (int(np.amin(data)/discX) - 1)
binsX= assignbins([min_data,max_data], discX) ## Default bin size
## SET MAX ENERGY FOR ALL INFINITY VALUES
if args.Emax:
cb_max=float(args.Emax)
else :
cb_max = 8
## SET HISTOGRAM CUTOFF
if args.cutoff:
hist_min=int(args.cutoff)
else :
hist_min = 10 # minimum number of configurations in one bin
## SET ORDER of McLaurin series expansion
if args.order:
order=int(args.order)
else :
order = 10 # default
## SET TEMPERATURE
if args.T:
T=float(args.T)
else :
T = 300 # simulation temperature
beta = 1.0/(0.001987*T)
## SET flag for Gaussian fitting of deltaV
if args.fit:
fit=args.fit
else :
fit=False # simulation temperature
##REWEIGHTING
if args.job == "amdweight_CE":
##CALCULATE effective acceleration factor
accel = accel_amd(dV,T)
print ("Effective acceleration factor with Gaussian approximation: ", accel)
hist,newedgesX,c1,c2,c3 = reweight_CE(data,hist_min,binsX,discX,dV,T,fit)
pmf=prephist(hist,T,cb_max)
c1 = -np.multiply(1.0/beta,c1)
c2 = -np.multiply(1.0/beta,c2)
c3 = -np.multiply(1.0/beta,c3)
c12 = np.add(c1,c2)
c123 = np.add(c12,c3)
pmf_c1 = np.add(pmf, c1)
print ("pmf_min-c1 = ", np.min(pmf_c1))
pmf_c1 = normalize(pmf_c1,cb_max)
pmf_c2 = np.add(pmf, c12)
print ("pmf_min-c2 = ", np.min(pmf_c2))
pmf_c2 = normalize(pmf_c2,cb_max)
pmf_c3 = np.add(pmf, c123)
print ("pmf_min-c3 = ", np.min(pmf_c3))
pmf_c3 = normalize(pmf_c3,cb_max)
elif args.job == "amd_time" :
##CALCULATE effective acceleration factor
accel = accel_amd(dV,T)
print ("Effective acceleration factor with Gaussian approximation: ", accel)
hist,newedgesX,c1,c2,c3 = reweight_CE(data,hist_min,binsX,discX,dV,T,fit)
c1 = np.multiply(1.0/beta,c1)
c2 = np.multiply(1.0/beta,c2)
c3 = np.multiply(1.0/beta,c3)
c12 = np.add(c1,c2)
c123 = np.add(c12,c3)
c1=prepdV(c1,cb_max)
print ("accel_min-c1 = ", np.min(c1))
c1 = c1 - np.min(c1)
c12=prepdV(c12,cb_max)
print ("accel_min-c2 = ", np.min(c12))
c12 = c12 - np.min(c12)
c123=prepdV(c123,cb_max)
print ("accel_min-c3 = ", np.min(c123))
c123 = c123 - np.min(c123)
itb=10
ite=len(c12)-5
dV=c12[itb:ite]
accel = accel_amd(dV,T)
print ("Time-averaged acceleration factor with Gaussian approximation: ", accel)
elif args.job == "amdweight_MC":
n=order
MCweight=np.zeros(len(dV))
beta_dV=np.multiply(dV,beta)
for x in range(0,n+1):
MCweight=np.add(MCweight,(np.divide(np.power(beta_dV, x), float(scipy.misc.factorial(x)))))
weights=MCweight
hist, newedgesX = np.histogram(data, bins = binsX, weights=weights)
hist=prephist(hist,T,cb_max)
elif args.job == "amdweight":
hist, newedgesX = np.histogram(data, bins = binsX, weights=weights)
hist=prephist(hist,T,cb_max)
else :
hist, newedgesX = np.histogram(data, bins = binsX, weights=None)
hist=prephist(hist,T,cb_max)
##SAVE FREE ENERGY DATA INTO A FILE
if args.job == "amdweight_MC" or args.job == "amdweight" or args.job == "noweight" :
pmffile = 'pmf-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
if args.job == "amdweight_CE" :
hist = pmf_c1
pmffile = 'pmf-c1-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
hist = pmf_c2
pmffile = 'pmf-c2-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
hist = pmf_c3
pmffile = 'pmf-c3-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
if args.job == "amd_time" :
hist = c1
pmffile = 'accel-c1-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
hist = c12
pmffile = 'accel-c2-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
hist = c123
pmffile = 'accel-c3-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
##SAVE WEIGHTS
if args.job == "amdweight_MC" or args.job == "amdweight" :
pmffile = 'weights-'+str(args.input)+'.xvg'
output_pmf(pmffile,weights,data)
if args.job == "amdweight_CE" :
##Convert c1, c12, c123 back to cumulant sums
c1 = -np.multiply(beta, c1)
c12 = -np.multiply(beta, c12)
c123 = -np.multiply(beta, c123)
hist = np.exp(c1)
pmffile = 'weights-c1-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
hist = np.exp(c12)
pmffile = 'weights-c2-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
hist = np.exp(c123)
pmffile = 'weights-c3-'+str(args.input)+'.xvg'
output_pmf(pmffile,hist,binsX)
if args.job == "histo" :
hist,newedgesX = histo(data,hist_min,binsX,discX)
pmffile = 'histo-'+str(args.input)+'.xvg'
output_dV_anharm(pmffile,binsX,hist)
if args.job == "amd_dV" :
hist, newedgesX, binf, dV_avg, dV_std, dV_anharm, dV_mat = reweight_dV(data,hist_min,binsX,discX,dV,T)
pmffile = 'dV-hist-'+str(args.input) + '.xvg'
output_dV(pmffile,dV)
dV_avg_all=np.average(dV)
dV_std_all=np.std(dV)
print ('dV all: avg = ', dV_avg_all, 'std = ', dV_std_all)
alpha = anharm(dV)
print ("Anharmonicity of all dV = " + str(alpha))
pmffile = 'dV-anharm-'+str(args.input)+'.xvg'
output_dV_anharm(pmffile,binsX,dV_anharm)
pmffile = 'dV-stat-'+str(args.input)+'.xvg'
output_dV_stat(pmffile,binsX,dV_avg,dV_std,dV_anharm)
pmffile = 'dV-mat-'+str(args.input)+'.xvg'
output_dV_mat(pmffile,binsX,hist,dV_avg,dV_std,dV_anharm,dV_mat)
###PLOTTING FUNCTION FOR WEIGHTS histogram
if plt_figs :
[hist, edges] = np.histogram(weights, bins=100)
width=np.absolute(np.subtract(edges[0], edges[1]))
plt.figure(1, figsize=(11,8.5))
plt.bar(edges[:100], hist, width=width, log=True)
plt.yscale('log') ###if typerror is thrown delete .matplotlib/fontList.cache file
plt.xticks(fontsize='18')
plt.yticks(fontsize='18')
plt.savefig('weights.png',bbox_inches=0)
print ("FIGURE SAVED weights.png")
plt.show()
print (" ")
print ("END")
########READ datafiles and print weights
def cmdlineparse():
parser = ArgumentParser(description="command line arguments")
parser.add_argument("-input", dest="input", required=True, help="input file", metavar="<input file>")
parser.add_argument("-job", dest="job", required=True, help="Reweighting method to use: <noweight>, <weighthist>, <amd_time>, <amd_dV>, <histo>, <amdweight>, <amdweight_MC>, <amdweight_CE>", metavar="<Job type reweighting method>")
parser.add_argument("-weight", dest="weight", required=False, help="weight file", metavar="<weight file>")
parser.add_argument("-Xdim", dest="Xdim", required=False, nargs="+", help="Xdimensions", metavar="<Xmin Xmax>")
parser.add_argument("-Ydim", dest="Ydim", required=False, nargs="+", help="Ydimension", metavar="<Ymin Ymax>")
parser.add_argument("-disc", dest="disc", required=False, help="Discretization size", metavar="<discretization>")
parser.add_argument("-cutoff", dest="cutoff", required=False, help="histogram cutoff", metavar="<cutoff>")
parser.add_argument("-T", dest="T", required=False, help="Temperature", metavar="<Temperature>")
parser.add_argument("-Emax", dest="Emax", required=False, help="Maximum free energy", metavar="<Emax>")
parser.add_argument("-fit", dest="fit", required=False, help="Fit deltaV distribution", metavar="<fit>")
parser.add_argument("-order", dest="order", required=False, help="Order of Maclaurin series", metavar="<order>")
args=parser.parse_args()
return args
def loadfiletoarray(file):
loaded=np.loadtxt(file, usecols=[0])
print ("DATA LOADED: "+file)
return loaded
def weightparse(rows, args):
if args.job == "weighthist":
data=np.loadtxt(args.weight)
weights=data[:,0]
dV = np.zeros(rows)
elif args.job == "amd_time" or args.job == "amd_dV" or args.job == "amdweight" or args.job == "amdweight_MC" or args.job == "amdweight_CE" :
data=np.loadtxt(args.weight)
weights = np.exp(data[:,0])
dV = data[:,2]
elif args.job == "noweight" or args.job == "histo":
weights = np.zeros(rows)
weights = weights + 1
dV = np.zeros(rows)
else:
print ("ERROR JOBTYPE"+ args.job+ " NOT RECOGNIZED")
del data
del weights
del dV
return weights,dV
def reweight_CE(data,hist_min,binsX,discX,dV,T,fit):
hist, newedgesX = np.histogram(data, bins = binsX, weights=None)
beta = 1.0/(0.001987*T)
nf = len(data)
nbins = len(hist)
c1 = np.zeros(nbins)
c2 = np.zeros(nbins)
c3 = np.zeros(nbins)
binf = np.zeros(nf) # array for storing assigned bin of each frame
nA = np.zeros(nbins,dtype=np.int) # nA is equivalent to hist here
dV_avg = np.zeros(nbins)
dV_avg2 = np.zeros(nbins)
dV_avg3 = np.zeros(nbins)
dV_std = np.zeros(nbins)
dV_avg_all=np.average(dV)
dV_std_all=np.std(dV)
print ('dV all: avg = ', dV_avg_all, 'std = ', dV_std_all)
diff_tol_avg = dV_std_all * 3
diff_tol_std = dV_std_all
dV_binsize = 50
dV_mat = [[[] for i in range(1)] for i in range(nbins)]
for i in range(len(data)):
j = int((data[i]-binsX[0])/discX)
if j == nbins :
j = nbins-1
binf[i] = j
dV_mat[j].append(dV[i])
nA[j] = nA[j]+1
for j in range(nbins):
if nA[j]>=hist_min :
num = int(nA[j])
atemp = np.asarray(dV_mat[j][1:num+1])
atemp2 = np.power(atemp,2)
atemp3 = np.power(atemp,3)
if fit :
## calculate average/std through gaussian fitting
hist_temp, bin_edges_temp = np.histogram(atemp, bins=dV_binsize)
bin_centres_temp = (bin_edges_temp[:-1] + bin_edges_temp[1:])/2
## output original histograms
pmffile = 'dV-hist-forFit-RC'+str('%#08.2f' % binsX[j]) + '.xvg'
output_pmf(pmffile,hist_temp,bin_centres_temp)
# p0 is the initial guess for the fitting coefficients (A, mu and sigma above)
mean=np.average(atemp)
std=np.std(atemp)
p0 = [0., 1., mean, std]
## coeff, var_matrix = curve_fit(gauss, bin_centres_temp, hist_temp, p0=p0)
coeff, var_matrix = curve_fit(gauss, bin_centres_temp, hist_temp, p0=p0)
# Finally, lets get the fitting parameters, i.e. the mean and standard deviation:
print (binsX[j], ': mean = ', coeff[2], 'sigma = ', coeff[3])
dV_avg[j]=coeff[2]
dV_std[j]=coeff[3]
# Get the fitted curve
hist_fit = gauss(bin_centres_temp, *coeff)
## output fitted histograms
pmffile = 'dV-hist-gaussFit-RC'+str('%#08.2f' % binsX[j]) + '.xvg'
output_pmf(pmffile,hist_fit,bin_centres_temp)
else :
## calculate average/std directly
dV_avg[j]=np.average(atemp)
dV_std[j]=np.std(atemp)
## if np.absolute(dV_avg[j]-dV_avg_all)>diff_tol_avg or np.absolute(dV_std[j]-dV_std_all)>diff_tol_std :
## dV_avg[j]=0
## dV_std[j]=0
dV_avg2[j]=np.average(atemp2)
dV_avg3[j]=np.average(atemp3)
del atemp
del atemp2
del atemp3
c1[j] = beta*dV_avg[j]
c2[j] = 0.5*beta**2*dV_std[j]**2
c3[j] = (1.0/6.0)*beta**3*(dV_avg3[j]-3.0*dV_avg2[j]*dV_avg[j]+2.0*dV_avg[j]**3)
del dV_mat
del dV_avg
del dV_avg2
del dV_avg3
del dV_std
return hist,newedgesX,c1,c2,c3
def reweight_dV(data,hist_min,binsX,discX,dV,T):
hist, newedgesX = np.histogram(data, bins = binsX, weights=None)
nf = len(data)
nbins = len(hist)
binf = np.zeros(nf) # array for storing assigned bin of each frame
nA = np.zeros(nbins,dtype=np.int) # nA is equivalent to hist here
dV_avg = np.zeros(nbins)
dV_std = np.zeros(nbins)
dV_anharm = np.zeros(nbins)
dV_mat = [[[] for i in range(1)] for i in range(nbins)]
for i in range(len(data)):
j = int((data[i]-binsX[0])/discX)
if j >= nbins :
j = nbins-1
binf[i] = j
dV_mat[j].append(dV[i])
nA[j] = nA[j]+1
for j in range(nbins):
dV_anharm[j] = 100
if nA[j]>0 :
num = int(nA[j])
atemp = np.asarray(dV_mat[j][1:num+1])
dV_avg[j] = np.average(atemp)
dV_std[j] = np.std(atemp)
dV_anharm[j] = anharm(atemp)
del atemp
return hist,newedgesX,binf,dV_avg,dV_std,dV_anharm,dV_mat
def histo(data,hist_min,binsX,discX):
hist, newedgesX = np.histogram(data, bins = binsX, weights=None)
return hist,newedgesX
def assignbins(dim, disc):
minimum=float(dim[0])
maximum=float(dim[1])
bins =np.arange(minimum,(maximum+disc),disc)
return bins
def normalize(pmf,cb_max):
pmf=pmf-np.min(pmf) ## zero value to lowest energy state
temphist=pmf
#set infinity free energy values to is cb_max
for x in range(len(temphist[:])):
if np.isinf(temphist[x]):
temphist[x]=cb_max
return temphist
def prephist(hist,T,cb_max):
hist=np.add(hist,0.000000000000000001) ###so that distrib
hist=(0.001987*T)*np.log(hist) ####Convert to free energy in Kcal/mol
print ("PMF_min = ", -np.max(hist))
hist=np.max(hist)-hist ## zero value to lowest energy state
temphist=hist
#set infinity free energy values to is cb_max
for x in range(len(temphist[:])):
if np.isinf(temphist[x]):
temphist[x]=cb_max
return temphist
def prepdV(hist,cb_max):
for x in np.where(hist == 0)[0]:
hist[x]=cb_max
return hist
## Convert histogram to free energy in Kcal/mol
def hist2pmf(hist,hist_min,T):
nbins = len(hist)
pmf = np.zeros(nbins)
pmf_min = 100
for j in range(len(hist)):
if hist[j]>=hist_min :
pmf[j]=-(0.001987*T)*np.log(hist[j])
if pmf_min > pmf[j] :
pmf_min=pmf[j]
return pmf
def output_pmf(pmffile,hist,binsX):
fpmf = open(pmffile, 'w')
strpmf='#RC \tPMF(kcal/mol)\n\n@ xaxis label \"RC\"\n@ yaxis label \"PMF(kcal/mol)\"\n@TYPE xy\n'
fpmf.write(strpmf)
for j in range(len(hist[:])):
strpmf=str(binsX[j]) + ' \t' + str(hist[j]) + '\n'
fpmf.write(strpmf)
fpmf.closed
return fpmf
def output_dV(pmffile,dV):
fpmf = open(pmffile, 'w')
strpmf='#dV \tp(dV) \n\n@ xaxis label \"dV\"\n@ yaxis label \"p(dV)\"\n@TYPE xy\n'
hist_dV, bin_dV = np.histogram(dV, bins=50)
for k in range(len(hist_dV)):
strpmf=strpmf + str(bin_dV[k]) + ' \t' + str(hist_dV[k]) + ' \n'
fpmf.write(strpmf)
fpmf.closed
return fpmf
def output_dV_anharm(pmffile,binsX,dV_anharm):
fpmf = open(pmffile, 'w')
strpmf='#RC \tdV_anharm \tError\n\n@ xaxis label \"RC\"\n@ yaxis label \"dV_anmarm\"\n@TYPE xy\n'
fpmf.write(strpmf)
for j in range(len(dV_anharm[:])):
strpmf=str(binsX[j]) + ' \t' + str(dV_anharm[j]) + '\n'
fpmf.write(strpmf)
fpmf.closed
return fpmf
def output_dV_stat(pmffile,binsX,dV_avg,dV_std,dV_anharm):
fpmf = open(pmffile, 'w')
strpmf='#RC \tdV_avg(kcal/mol) \tError\n\n@ xaxis label \"RC\"\n@ yaxis label \"dV(kcal/mol)\"\n@TYPE xydy\n'
fpmf.write(strpmf)
for j in range(len(dV_avg[:])):
strpmf=str(binsX[j]) + ' \t' + str(dV_avg[j]) + ' \t' + str(dV_std[j]) + ' \t' + str(dV_anharm[j]) + '\n'
fpmf.write(strpmf)
fpmf.closed
return fpmf
def output_dV_mat(pmffile,binsX,hist,dV_avg,dV_std,dV_anharm,dV_mat):
fpmf = open(pmffile, 'w')
strpmf='#RC \tNf \tdV_avg \tdV_std \tdV_anharm \tdV_ij \n\n@ xaxis label \"RC\"\n@ yaxis label \"dV(kcal/mol)\"\n@TYPE xy\n'
fpmf.write(strpmf)
for j in range(len(dV_avg[:])):
nf_j = int(hist[j])
strpmf=str(binsX[j]) + ' \t' + str(hist[j]) + ' \t' + str(dV_avg[j]) + ' \t' + str(dV_std[j]) + ' \t' + str(dV_anharm[j])
strpmf=strpmf + ' \t' + str(dV_mat[j][1:nf_j+1])
strpmf=strpmf + '\n'
fpmf.write(strpmf)
fpmf.closed
return fpmf
def accel_amd_window(c12,itb,ite):
avg = np.average(dV)
std = np.std(dV)
accel = np.exp(c12)
return accel
def accel_amd(dV,T):
avg = np.average(dV)
std = np.std(dV)
accel = np.exp(avg/(0.001987*T)+(std/(0.001987*T))**2/2.)
return accel
def gauss(x, *p):
y0, A, mu, sigma = p
return y0+A*np.exp(-(x-mu)**2/(2.*sigma**2))
def anharm(data):
var=np.var(data)
# hist, edges=np.histogram(data, 50, normed=True)
hist, edges=np.histogram(data, 50, density=True)
hist=np.add(hist,0.000000000000000001) ###so that distrib
dx=edges[1]-edges[0]
S1=-1*np.trapz(np.multiply(hist, np.log(hist)),dx=dx)
S2=0.5*np.log(np.add(2.00*np.pi*np.exp(1)*var,0.000000000000000001))
alpha=S2-S1
if np.isinf(alpha):
alpha = 100
return alpha
def anharmND(datafull):
print ("Performing error estimation")
width=datafull[0,:]
lendata=len(datafull[:,0])
for x in range(len(width)):
var=np.var(datafull[:,x])
std=np.std(datafull[:,x])
print ("variance of "+str(x)+" is : " +str(var)+" Standard Deviation: "+str(std))
hist, edges=np.histogram(datafull[:,x], 100, normed=True)
hist=np.add(hist,0.000000000000000001) ###so that distrib
dx=edges[1]-edges[0]
S1=-1*np.trapz(np.multiply(hist, np.log(hist)),dx=dx)
S2=0.5*np.log(np.add(2.00*np.pi*np.exp(1)*var,0.000000000000000001))
alpha=S2-S1
print (str(x)+"dimension S1 = "+str(S1)+" S2 = "+str(S2)+" Alpha = "+str(alpha))
return var, std, alpha
if __name__ == '__main__':
main()