-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·463 lines (352 loc) · 21.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import itertools
import os
from collections import Counter
from multiprocessing import Pool
from typing import Any, Collection, Literal, Sequence, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy
import seaborn as sns
import statsmodels.api as sm
from scipy import stats
from sklearn import svm
from sklearn.ensemble import RandomForestRegressor
from statsmodels.base.model import LikelihoodModelResults
from statsmodels.regression.linear_model import RegressionResults
from statsmodels.tools.tools import pinv_extended
from tqdm.auto import tqdm
from argparse_with_defaults import ArgumentParserWithDefaults
from features import PATH_DATA_FOLDER, VALID_LEVIN_RETURN_MODES, is_feature_binary, is_feature_multi_label, \
is_feature_string, load_features
CLASSIFICATION_MODELS = {"dominance-score", "sklearn-clf"}
REGRESSION_MODELS = {"mean-diff-and-corr", "lasso", "ols", "ridge", "sklearn"}
MODELS = CLASSIFICATION_MODELS | REGRESSION_MODELS
EXAMPLE_MODES = ["top", "sample", "disabled"]
pd.options.display.float_format = "{:,.3f}".format
# Set this env var to avoid concurrency issues, even if not using `tokenizers`.
os.environ["TOKENIZERS_PARALLELISM"] = "0"
def _value_contains_label(v: Any, label: str) -> bool:
if isinstance(v, str):
return v == label
elif isinstance(v, Collection):
return label in v
else:
raise ValueError(f"Unexpected value type: {type(v)}")
def _compute_feature_examples(feature_name: str, raw_features: pd.DataFrame, multi_label_features: Collection[str],
max_word_count: int = 5, sample_size: int | None = None) -> Tuple[str, str, str]:
underscore_split = feature_name.split("_", maxsplit=1)
if (main_feature_name := underscore_split[0]) in multi_label_features:
if len(underscore_split) > 1:
label = underscore_split[1]
else: # This can happen when only one label was kept from a multi-label feature.
label = raw_features[main_feature_name].iloc[0]
if "-" in main_feature_name:
main_feature_name_prefix, word_type = main_feature_name.split("-", maxsplit=1)
else:
main_feature_name_prefix, word_type = None, None
if word_type in {"common", "common-0", "common-1", "common-2", "original", "replacement"}:
mask = raw_features[main_feature_name].map(lambda labels: _value_contains_label(labels, label))
rows_with_label = raw_features[mask]
if sample_size:
rows_with_label = rows_with_label.sample(min(sample_size, len(rows_with_label)))
if word_type == "common":
lists_of_words_with_label = rows_with_label.apply(
lambda row: [w
for i, w in enumerate(row["words-common"])
if _value_contains_label(row[f"{main_feature_name_prefix}-common-{i}"], label)],
axis=1)
# We could also use `lists_of_words_with_label.explode()`, but this is likely faster:
words = (w for word_iter in lists_of_words_with_label for w in word_iter)
lists_of_words_without_label = rows_with_label.apply(
lambda row: [w
for i, w in enumerate(row["words-common"])
if not _value_contains_label(row[f"{main_feature_name_prefix}-common-{i}"],
label)], axis=1)
# We could also use `lists_of_words_without_label.explode()`, but this is likely faster:
common_co_occurrence_words = (w for word_iter in lists_of_words_without_label for w in word_iter)
non_common_co_occurrence_words = itertools.chain(rows_with_label.get("word-original", []),
rows_with_label.get("word-replacement", []))
else:
word_feature_name_prefix = "word" + ("s" if word_type.startswith("common-") else "")
words = rows_with_label[f"{word_feature_name_prefix}-{word_type}"]
common_co_occurrence_words = (w
for other_word_type in
{"common-0", "common-1", "common-2"} - {word_type}
for w in rows_with_label.get(f"words-{other_word_type}", []))
non_common_co_occurrence_words = (w
for other_word_type in {"original", "replacement"} - {word_type}
for w in rows_with_label.get(f"word-{other_word_type}", []))
examples_str = ", ".join(f"{w} ({freq})" for w, freq in Counter(words).most_common(max_word_count))
common_co_occurrence_example_str = ", ".join(
f"{w} ({freq})" for w, freq in Counter(common_co_occurrence_words).most_common(max_word_count))
non_common_co_occurrence_example_str = ", ".join(
f"{w} ({freq})" for w, freq in Counter(non_common_co_occurrence_words).most_common(max_word_count))
else:
examples_str = ""
common_co_occurrence_example_str = ""
non_common_co_occurrence_example_str = ""
else:
examples_str = ""
common_co_occurrence_example_str = ""
non_common_co_occurrence_example_str = ""
return examples_str, common_co_occurrence_example_str, non_common_co_occurrence_example_str
def obtain_top_examples_and_co_occurrences(
feature_names: Sequence[str], raw_features: pd.DataFrame, max_word_count: int = 5,
sample_size: int | None = None) -> Tuple[Sequence[str], Sequence[str], Sequence[str]]:
multi_label_features = {main_name
for name in feature_names
if ((main_name := name.split("_", maxsplit=1)[0]) in raw_features
and (is_feature_multi_label(raw_features[main_name])
or is_feature_string(raw_features[main_name])))}
worker_func = functools.partial(_compute_feature_examples, raw_features=raw_features,
multi_label_features=multi_label_features,
max_word_count=max_word_count, sample_size=sample_size)
with Pool() as pool:
examples, common_co_occurrence_examples, non_common_co_occurrence_examples = zip(
*tqdm(pool.imap(worker_func, feature_names, chunksize=32), total=len(feature_names),
desc="Computing examples and co-occurrences"))
return examples, common_co_occurrence_examples, non_common_co_occurrence_examples
def compute_ols_regression(features: pd.DataFrame, dependent_variable: pd.Series,
regularization: Literal["ridge", "lasso"] | None = None, alpha: float = 1.0) -> pd.DataFrame:
model = sm.OLS(dependent_variable, features)
if regularization:
alpha /= len(features) # See https://stackoverflow.com/a/72260809/1165181
results = model.fit_regularized(L1_wt=int(regularization == "lasso"), alpha=alpha)
else:
results = model.fit()
try:
summary = results.summary()
except NotImplementedError:
summary = None
if summary:
print(summary)
df = pd.read_html(summary.tables[1].as_html(), header=0, index_col=0)[0]
else:
print("R^2:", RegressionResults(model, results.params).rsquared)
df = pd.DataFrame(results.params, columns=["coef"], index=features.columns)
return df
def compute_sklearn_regression(features: pd.DataFrame, dependent_variable: pd.Series) -> pd.DataFrame:
model = RandomForestRegressor(n_jobs=-1, verbose=1)
model.fit(features, dependent_variable)
print("R^2:", model.score(features, dependent_variable))
return pd.DataFrame(model.feature_importances_, columns=["coef"], index=features.columns)
def compute_dominance_score(features: pd.DataFrame, dependent_variable: pd.Series) -> pd.DataFrame:
assert len(features) == len(dependent_variable)
assert is_feature_binary(dependent_variable)
total_pos = dependent_variable.sum()
neg_labels = ~dependent_variable
total_neg = neg_labels.sum()
dominance_scores = {}
for column_name in features.columns:
feature = features[column_name]
if is_feature_binary(feature):
pos_coverage = feature[dependent_variable].sum() / total_pos
neg_coverage = feature[neg_labels].sum() / total_neg
dominance_scores[column_name] = pos_coverage / neg_coverage
return pd.DataFrame(dominance_scores.values(), columns=["coef"], index=dominance_scores.keys()) # noqa
def compute_sklearn_clf(features: pd.DataFrame, dependent_variable: pd.Series) -> pd.DataFrame:
clf = svm.LinearSVC(class_weight="balanced", max_iter=1_000_000)
clf.fit(features, dependent_variable)
return pd.DataFrame(clf.coef_, columns=["coef"], index=features.columns)
def compute_mean_diff_and_corr(features: pd.DataFrame, dependent_variable: pd.Series,
confidence: float = .95) -> pd.DataFrame:
assert len(features) == len(dependent_variable)
coef_type = {}
score = {}
std_err = {}
t = {}
p = {}
lower_bound = {}
upper_bound = {}
for feature_name in tqdm(features.columns, desc="Computing mean diff and corr"):
feature = features[feature_name]
if is_feature_binary(feature):
coef_type[feature_name] = "diff"
feature = feature.astype(bool)
pos_group = dependent_variable[feature]
neg_group = dependent_variable[~feature]
t[feature_name], p[feature_name] = stats.ttest_ind(pos_group, neg_group, equal_var=False)
# The following code was adapted from `stats.ttest_ind`:
score[feature_name] = pos_group.mean() - neg_group.mean()
pos_group_var = pos_group.var(ddof=1)
neg_group_var = neg_group.var(ddof=1)
pos_group_size = len(pos_group)
neg_group_size = len(neg_group)
pos_group_vn = pos_group_var / pos_group_size
neg_group_vn = neg_group_var / neg_group_size
std_err[feature_name] = np.sqrt(pos_group_vn + neg_group_vn)
with np.errstate(divide="ignore", invalid="ignore"):
df = (pos_group_vn + neg_group_vn) ** 2 / (pos_group_vn ** 2 / (pos_group_size - 1)
+ neg_group_vn ** 2 / (neg_group_size - 1))
# If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0).
# Hence, it doesn't matter what df is as long as it's not NaN.
df = np.where(np.isnan(df), 1, df)
half_interval_size = stats.t.ppf(confidence + (1 - confidence) / 2, df) * std_err[feature_name]
lower_bound[feature_name] = score[feature_name] - half_interval_size
upper_bound[feature_name] = score[feature_name] + half_interval_size
elif np.issubdtype(feature.dtype, np.number):
coef_type[feature_name] = "pear"
corr_result = stats.pearsonr(feature, dependent_variable)
score[feature_name] = corr_result.statistic
p[feature_name] = corr_result.pvalue
lower_bound[feature_name], upper_bound[feature_name] = corr_result.confidence_interval(confidence)
std_err[feature_name] = np.sqrt((1 - score[feature_name] ** 2) / (len(feature) - 2))
t[feature_name] = score[feature_name] / std_err[feature_name]
df = pd.DataFrame({"coef-type": coef_type.values(), "coef": score.values(), "std err": std_err.values(),
"t": t.values(), "P>|t|": p.values(), f"[{(1 - confidence) / 2:.3f}": lower_bound.values(),
f"{(confidence + (1 - confidence) / 2):.3f}]": upper_bound.values()}, index=t.keys()) # noqa
print(df.to_string())
return df
def parse_args() -> argparse.Namespace:
parser = ArgumentParserWithDefaults()
parser.add_argument("--model", default="mean-diff-and-corr", choices=MODELS)
parser.add_argument("--input-path", default=PATH_DATA_FOLDER / "merged.csv")
parser.add_argument("--max-data-count", type=int)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--dependent-variable-name")
parser.add_argument("-r", "--remove-features", dest="feature_deny_list", nargs="+",
default={"wup-similarity", "lch-similarity", "path-similarity"},
choices={"concreteness", "frequency", "GeneralINQ", "hypernym", "hypernym/indirect",
"lch-similarity", "Levin", "LIWC", "nb-synsets", "number-of-words", "path-similarity",
"spacy", "text-similarity", "word-similarity", "wup-similarity"})
parser.add_argument("--min-non-most-frequent-values", type=int, default=100,
help="The minimum number of values that have to be different from the most frequent one.")
parser.add_argument("--no-neg-features", dest="compute_neg_features", action="store_false")
parser.add_argument("--levin-return-mode", choices=VALID_LEVIN_RETURN_MODES, default="semantic_fine_grained")
parser.add_argument("--merge-original-and-replacement-features", action="store_true")
parser.add_argument("--add-constant-feature", action="store_true")
parser.add_argument("--remove-correlated-features", action="store_true")
parser.add_argument("--feature-correlation-keep-threshold", type=float, default=.8)
parser.add_argument("--do-vif", action="store_true")
parser.add_argument("--alpha", type=float, default=1, help="Only applies to the ridge regression model.")
parser.add_argument("--iterations", type=int, default=10_000, help="Only applies to the SVM model.")
parser.add_argument("--confidence", type=float, default=.95)
parser.add_argument("--examples", choices=EXAMPLE_MODES, default="top")
parser.add_argument("--plot", action="store_true")
args = parser.parse_args()
assert args.max_data_count is None or not args.debug, "Cannot specify max data count in debug mode."
args.max_data_count = 1000 if args.debug else args.max_data_count
args.min_non_most_frequent_values = 10 if args.debug else args.min_non_most_frequent_values
args.dependent_variable_name = (args.dependent_variable_name
or ("clip_score_diff" if args.model in REGRESSION_MODELS else "clip prediction"))
args.feature_deny_list = set(args.feature_deny_list)
assert args.compute_neg_features or not args.merge_original_and_replacement_features, \
"Cannot merge original and replacement features if neg features are not computed."
args.do_standardization = args.model in {"lasso", "ols", "ridge"}
return args
def main() -> None:
args = parse_args()
print(args)
raw_features, features, dependent_variable = load_features(
path=args.input_path, dependent_variable_name=args.dependent_variable_name,
max_data_count=args.max_data_count, feature_deny_list=args.feature_deny_list,
standardize_dependent_variable=args.do_standardization,
standardize_binary_features=args.do_standardization,
compute_neg_features=args.compute_neg_features, levin_return_mode=args.levin_return_mode,
compute_similarity_features=args.model in REGRESSION_MODELS,
add_constant_feature=args.add_constant_feature,
merge_original_and_replacement_features=args.merge_original_and_replacement_features,
remove_correlated_features=args.remove_correlated_features,
feature_correlation_keep_threshold=args.feature_correlation_keep_threshold, do_vif=args.do_vif,
min_non_most_frequent_values=args.min_non_most_frequent_values)
if args.model in {"ols", "ridge", "lasso"}:
regularization = {"ols": None}.get(args.model, args.model)
df = compute_ols_regression(features, dependent_variable, regularization=regularization, alpha=args.alpha)
elif args.model == "sklearn":
df = compute_sklearn_regression(features, dependent_variable)
elif args.model == "dominance-score":
df = compute_dominance_score(features, dependent_variable)
elif args.model == "sklearn-clf":
df = compute_sklearn_clf(features, dependent_variable)
elif args.model == "mean-diff-and-corr":
df = compute_mean_diff_and_corr(features, dependent_variable)
else:
raise ValueError(f"Unknown model: {args.model} (should be in {MODELS}).")
df = df.sort_values(by=["coef"], ascending=False)
confidence = args.confidence
if "P>|t|" not in df.columns:
pinv = pinv_extended(features[df.index])[0]
normalized_cov_params = pinv @ pinv.T
results = LikelihoodModelResults(None, df.coef, normalized_cov_params=normalized_cov_params)
df["std err"] = results.bse
df["t"] = results.tvalues
df["P>|t|"] = results.pvalues
confidence_intervals = results.conf_int(alpha=(1 - args.confidence))
df[f"[{(1 - confidence) / 2:.3f}"] = confidence_intervals[:, 0]
df[f"{(confidence + (1 - confidence) / 2):.3f}]"] = confidence_intervals[:, 1]
print(df.to_string())
if args.examples != "disabled":
if args.examples == "top":
sample_size = None
elif args.examples == "sample":
sample_size = 100
else:
raise ValueError(f"Unknown examples mode: {args.examples} (should be in {EXAMPLE_MODES}).")
(df["examples"], df["co-occurring word examples common to both tuples"],
non_common_co_occurrence_examples) = obtain_top_examples_and_co_occurrences(
df.index, raw_features, sample_size=sample_size)
if args.compute_neg_features:
df["co-occurring word examples from only one tuple"] = non_common_co_occurrence_examples
df = df[df["P>|t|"] <= (1 - args.confidence)]
print()
print()
print(f"Features whose coefficient is significantly different from zero ({len(df)}):")
print(df.to_string())
df.to_csv(f"data/output_{args.dependent_variable_name}.csv")
if args.plot:
sns.set_theme()
top_k = 10
top_df = pd.concat([df.iloc[:top_k], df[-top_k:]])
df_to_plot = top_df.reset_index(names="feature")
# Hack to get error bars (just one datapoint per feature wouldn't call the function):
df_to_plot = pd.concat([df_to_plot, df_to_plot], ignore_index=True)
def _error_bar(x: pd.Series) -> Tuple[float, float]:
return tuple(df_to_plot.loc[x.index[0]][[f"[{(1 - confidence) / 2:.3f}",
f"{(confidence + (1 - confidence) / 2):.3f}]"]])
good_color, bad_color = sns.color_palette("deep", 4)[-2:]
sns.catplot(data=df_to_plot, x="coef", y="feature", errorbar=_error_bar, kind="point", join=False, aspect=1.5,
palette=[good_color] * top_k + [bad_color] * top_k)
plt.show()
non_standardized_features_as_int = features.copy()
if args.do_standardization:
# Hack to undo the standardization:
non_standardized_features_as_int[features == features.min()] = 0
non_standardized_features_as_int[features == features.max()] = 1
else:
non_standardized_features_as_int = features
non_standardized_features_as_int = non_standardized_features_as_int.astype(int)
binary_feature_names = [feature_name
for feature_name in top_df.index
if is_feature_binary(non_standardized_features_as_int[feature_name])]
binary_features = non_standardized_features_as_int[binary_feature_names]
non_standardized_dependent_variable = raw_features[args.dependent_variable_name]
repeated_dependent_variable = pd.concat([non_standardized_dependent_variable] * len(binary_features.columns),
ignore_index=True)
df_to_plot2 = pd.concat([binary_features.melt(var_name="feature"), repeated_dependent_variable], axis="columns")
sns.catplot(data=df_to_plot2, x=args.dependent_variable_name, y="feature", hue="value", kind="box", aspect=1.5)
plt.show()
df_to_plot3_1 = raw_features[["concreteness-common", args.dependent_variable_name]].copy()
df_to_plot3_1 = df_to_plot3_1.sort_values(by="concreteness-common")
df_to_plot3_1["type"] = "original"
sns.regplot(data=df_to_plot3_1, x="concreteness-common", y=args.dependent_variable_name,
line_kws={"color": "salmon"})
plt.show()
df_to_plot3_2 = df_to_plot3_1.copy()
df_to_plot3_2[args.dependent_variable_name] = scipy.signal.savgol_filter(
df_to_plot3_2[args.dependent_variable_name], window_length=1000, polyorder=3)
df_to_plot3_2["type"] = "smoothed"
df_to_plot3 = pd.concat([df_to_plot3_1, df_to_plot3_2], ignore_index=True)
sns.relplot(data=df_to_plot3, x="concreteness-common", y=args.dependent_variable_name, hue="type", kind="line")
plt.show()
sns.displot(data=raw_features, x="frequency-common", y=args.dependent_variable_name, kind="kde",
log_scale=[True, False])
plt.show()
sns.displot(data=raw_features, x=args.dependent_variable_name, kind="kde")
plt.show()
if __name__ == "__main__":
main()