Skip to content

Latest commit

 

History

History

digiin

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


DIGI IN Click

DIGI IN Click is a compact add-board that converts industrial inputs into serialized SPI-compatible output. This board features the MAX22199, an octal industrial digital input from Analog Devices. It stands out for its compliance with the IEC 61131-2 standard, ensuring reliability and efficiency.

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jan 2024.
  • Type : SPI type

Software Support

We provide a library for the DIGI IN Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DIGI IN Click driver.

Standard key functions :

  • digiin_cfg_setup Config Object Initialization function.
void digiin_cfg_setup ( digiin_cfg_t *cfg );
  • digiin_init Initialization function.
err_t digiin_init ( digiin_t *ctx, digiin_cfg_t *cfg );
  • digiin_default_cfg Click Default Configuration function.
err_t digiin_default_cfg ( digiin_t *ctx );

Example key functions :

  • digiin_write_reg This function is used to write data into the selected register by using SPI serial interface.
err_t digiin_write_reg ( digiin_t *ctx, uint8_t reg, uint8_t data_in );
  • digiin_read_reg This function reads a data byte from the selected register by using SPI serial interface.
err_t digiin_read_reg ( digiin_t *ctx, uint8_t reg, uint8_t *data_out );
  • digiin_pulse_latch This function is used to generate LATCH pulse for capturing channel data.
void digiin_pulse_latch ( digiin_t *ctx );

Example Description

This example demonstrates the use of DIGI IN Click board by reading and displaying the state of the channels.

The demo application is composed of two sections :

Application Init

Initializes the driver, performs the Click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    digiin_cfg_t digiin_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    digiin_cfg_setup( &digiin_cfg );
    DIGIIN_MAP_MIKROBUS( digiin_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == digiin_init( &digiin, &digiin_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    while ( DIGIIN_PIN_STATE_HIGH == digiin_get_rdy_pin( &digiin ) )
    {
        log_printf( &logger, "Please check if 24V is connected \r\n" );
        Delay_ms ( 1000 );
    }

    if ( DIGIIN_ERROR == digiin_default_cfg ( &digiin ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

Application Task

Reads and displays on the USB UART the channel state every second.

void application_task ( void )
{
     uint8_t channel_data = 0;

    digiin_pulse_latch( &digiin );

    if ( DIGIIN_OK == digiin_read_reg( &digiin, DIGIIN_REG_DISTATE, &channel_data ) )
    {
        if ( channel_data & DIGIIN_CHANNEL_1_MASK )
        {
            log_printf( &logger, "Channel 1 State: HIGH \r\n" );
        }
        else
        { 
            log_printf( &logger, "Channel 1 State: LOW \r\n" );
        }
        if ( channel_data & DIGIIN_CHANNEL_2_MASK )
        {
            log_printf( &logger, "Channel 2 State: HIGH \r\n" );
        }
        else
        { 
            log_printf( &logger, "Channel 2 State: LOW \r\n" );
        }
        if ( channel_data & DIGIIN_CHANNEL_3_MASK )
        {
            log_printf( &logger, "Channel 3 State: HIGH \r\n" );
        }
        else
        { 
            log_printf( &logger, "Channel 3 State: LOW \r\n" );
        }
        if ( channel_data & DIGIIN_CHANNEL_4_MASK )
        {
            log_printf( &logger, "Channel 4 State: HIGH \r\n" );
        }
        else
        { 
            log_printf( &logger, "Channel 4 State: LOW \r\n" );
        }
        if ( channel_data & DIGIIN_CHANNEL_5_MASK )
        {
            log_printf( &logger, "Channel 5 State: HIGH \r\n" );
        }
        else
        { 
            log_printf( &logger, "Channel 5 State: LOW \r\n" );
        }
        if ( channel_data & DIGIIN_CHANNEL_6_MASK )
        {
            log_printf( &logger, "Channel 6 State: HIGH \r\n" );
        }
        else
        { 
            log_printf( &logger, "Channel 6 State: LOW \r\n" );
        }
        if ( channel_data & DIGIIN_CHANNEL_7_MASK )
        {
            log_printf( &logger, "Channel 7 State: HIGH \r\n" );
        }
        else
        { 
            log_printf( &logger, "Channel 7 State: LOW \r\n" );
        }
        if ( channel_data & DIGIIN_CHANNEL_8_MASK )
        {
            log_printf( &logger, "Channel 8 State: HIGH \r\n" );
        }
        else
        { 
            log_printf( &logger, "Channel 8 State: LOW \r\n" );
        }
        log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );
    }
    else
    {
        log_error( &logger, " Read error." );
    }
    
    if ( DIGIIN_PIN_STATE_HIGH == digiin_get_flt_pin( &digiin ) )
    {
        uint8_t flt_data = 0;
        digiin_read_reg( &digiin, DIGIIN_REG_FAULT1, &flt_data );
        log_printf( &logger, "Fault1 data: 0x%.2X \r\n", ( uint16_t ) flt_data );
        digiin_read_reg( &digiin, DIGIIN_REG_FAULT2, &flt_data );
        log_printf( &logger, "Fault2 data: 0x%.2X \r\n", ( uint16_t ) flt_data );
        log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );
    }

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DIGIIN

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.