-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
236 lines (168 loc) · 8.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import glob
from multiprocessing import cpu_count
import os
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import soundfile as sf
from melgan.generator import Generator
from melgan.discriminator import Discriminator
from dataset import MelWavDataset
def main(args):
device = torch.device(args.device)
train_dataset = MelWavDataset(
args.train_dir, args.data_length, args.hop_length)
valid_dataset = MelWavDataset(
args.valid_dir, args.data_length, args.hop_length)
test_dataset = MelWavDataset(
args.test_dir, args.data_length, args.hop_length)
sample_dataset = MelWavDataset(
args.sample_dir, "MAX", args.hop_length)
train_dataloader = DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.batch_num_workers)
valid_dataloader = DataLoader(
valid_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.batch_num_workers)
test_dataloader = DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.batch_num_workers)
start_epoch = 0
generator_save_dir = glob.glob(os.path.join(args.save_dir, "*_generator.pt"))
discriminator_save_dir = glob.glob(os.path.join(args.save_dir, "*_discriminator.pt"))
if generator_save_dir:
generator = torch.load(generator_save_dir[-1], map_location="cpu").to(device)
generator_name = os.path.split(generator_save_dir[-1])[-1]
start_epoch = int(generator_name[:generator_name.find('_')]) - 1
else:
generator = Generator().to(device)
if discriminator_save_dir:
discriminator = torch.load(discriminator_save_dir[-1], map_location="cpu").to(device)
else:
discriminator = Discriminator().to(device)
g_opt = optim.Adam(generator.parameters(), lr=1e-4, betas=(0.5, 0.9))
d_opt = optim.Adam(discriminator.parameters(), lr=1e-4, betas=(0.5, 0.9))
if args.use_tensorboard:
writer = SummaryWriter(args.tensorboard_save_dir, filename_suffix='MelGAN_Train')
for epoch in range(start_epoch, args.epochs):
print(f"({epoch+1}/{args.epochs}) epochs")
train_generator_loss = 0
train_discriminator_loss = 0
valid_generator_loss = 0
valid_discriminator_loss = 0
for mel, wav in tqdm(train_dataloader):
mel = mel.to(device)
wav = wav.to(device)
y_hat = generator(mel)
p_hat = discriminator(y_hat)
p = discriminator(wav)
generator_loss = get_generator_loss(p, p_hat)
generator.zero_grad()
generator_loss.backward()
g_opt.step()
y_hat = generator(mel)
p_hat = discriminator(y_hat)
p = discriminator(wav)
discriminator_loss = get_discriminator_loss(p, p_hat)
discriminator.zero_grad()
discriminator_loss.backward()
d_opt.step()
train_generator_loss += generator_loss
train_discriminator_loss += discriminator_loss
train_generator_loss /= len(train_dataloader)
train_discriminator_loss /= len(train_dataloader)
for mel, wav in valid_dataloader:
with torch.no_grad():
mel = mel.to(device)
wav = wav.to(device)
y_hat = generator(mel)
p_hat = discriminator(y_hat)
p = discriminator(wav)
generator_loss = get_generator_loss(p, p_hat)
discriminator_loss = get_discriminator_loss(p, p_hat)
valid_generator_loss += generator_loss
valid_discriminator_loss += discriminator_loss
valid_generator_loss /= len(valid_dataloader)
valid_discriminator_loss /= len(valid_dataloader)
if args.use_tensorboard:
writer.add_scalar("Generator/Train",
train_generator_loss, epoch + 1)
writer.add_scalar("Discriminator/Train",
train_discriminator_loss, epoch + 1)
writer.add_scalar("Generator/Valid",
valid_generator_loss, epoch + 1)
writer.add_scalar("Discriminator/Valid",
valid_discriminator_loss, epoch + 1)
if (epoch + 1) % args.save_interval == 0:
save_models(epoch, args.save_dir, generator, discriminator)
if (epoch + 1) % args.sample_save_interval == 0:
for i in range(len(sample_dataset)):
with torch.no_grad():
file_name = os.path.split(sample_dataset.file_names[i])[-1]
mel = sample_dataset[i][0].to(device).unsqueeze(0)
wav = generator(mel).squeeze().cpu()
sf.write(os.path.join(
args.sample_save_dir, f"{epoch+1}_{file_name}.wav"), wav.detach().numpy(), 22050)
print(f"\n training_generator_loss: {train_generator_loss}\t\
training_discriminator_loss: {train_discriminator_loss}\t\
validtion_generator_loss: {valid_generator_loss}\t\
validation_discriminator_loss: {valid_discriminator_loss}")
for mel, wav in test_dataloader:
with torch.no_grad():
mel = mel.to(device)
wav = wav.to(device)
y_hat = generator(mel)
p_hat = discriminator(y_hat)
p = discriminator(wav)
generator_loss = get_generator_loss(p, p_hat)
discriminator_loss = get_discriminator_loss(p, p_hat)
print(f"Test Generator Loss: {generator_loss}\t Test Discriminator Loss: {discriminator_loss}")
save_models(args.epochs, args.save_dir, generator, discriminator)
def get_generator_loss(p, p_hat):
adversarial_loss = 0
feature_matching_loss = 0
for output_hat in p_hat:
adversarial_loss += -output_hat[-1].mean()
for output, output_hat in zip(p_hat, p):
for feature, feature_hat in zip(output, output_hat):
feature_matching_loss += F.l1_loss(feature_hat, feature).mean()
generator_loss = adversarial_loss + 10 * feature_matching_loss
return generator_loss
def get_discriminator_loss(p, p_hat):
real_loss = 0
fake_loss = 0
for real_output, fake_ouptut in zip(p, p_hat):
real_loss += F.relu(1 - real_output[-1]).mean()
fake_loss += F.relu(1 + fake_ouptut[-1]).mean()
discriminator_loss = real_loss + fake_loss
return discriminator_loss
def save_models(epoch, save_dir, generator, discriminator):
for save_path in glob.glob(os.path.join(save_dir, "*")):
os.remove(save_path)
torch.save(generator, os.path.join(save_dir, f"{epoch+1}_generator.pt"))
torch.save(discriminator, os.path.join(save_dir, f"{epoch+1}_discriminator.pt"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", default="./models")
parser.add_argument("--sample_save_dir", default="./samples")
parser.add_argument("--train_dir", default="./train")
parser.add_argument("--valid_dir", default="./valid")
parser.add_argument("--test_dir", default="./test")
parser.add_argument("--sample_dir", default="./sample")
parser.add_argument("--data_length", default=32, type=int)
parser.add_argument("--hop_length", default=256, type=int)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--batch_num_workers", default=cpu_count(), type=int)
parser.add_argument("--save_interval", default=5, type=int)
parser.add_argument("--sample_save_interval", default=5, type=int)
parser.add_argument("--use_tensorboard", default=False, type=bool)
parser.add_argument("--tensorboard_save_dir", default="./runs")
parser.add_argument("--device", default="cpu")
args = parser.parse_args()
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.sample_save_dir, exist_ok=True)
if args.use_tensorboard:
os.makedirs(args.tensorboard_save_dir, exist_ok=True)
main(args)