Morrizzzzz
/
Counting-from-Sky-A-Large-scale-Dataset-for-Remote-Sensing-Object-Counting-and-A-Benchmark-Method
Public
forked from gaoguangshuai/Counting-from-Sky-A-Large-scale-Dataset-for-Remote-Sensing-Object-Counting-and-A-Benchmark-Method
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage.py
35 lines (28 loc) · 1.18 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import random
import os
from PIL import Image, ImageFilter, ImageDraw
import numpy as np
import h5py
from PIL import ImageStat
import cv2
def load_data(img_path, train=True):
gt_path = img_path.replace('.jpg', '.h5').replace('images', 'ground_truth')
img = Image.open(img_path).convert('RGB')
gt_file = h5py.File(gt_path)
target = np.asarray(gt_file['density'])
if True:
crop_size = (img.size[0] // 2, img.size[1] // 2)
# if random.randint(0, 9) <= -1:
if random.randint(0, 9) <= 4.5:
dx = int(random.randint(0, 1) * img.size[0] * 1. / 2)
dy = int(random.randint(0, 1) * img.size[1] * 1. / 2)
else:
dx = int(random.random() * img.size[0] * 1. / 2)
dy = int(random.random() * img.size[1] * 1. / 2)
img = img.crop((dx, dy, crop_size[0] + dx, crop_size[1] + dy))
target = target[dy:crop_size[1] + dy, dx:crop_size[0] + dx]
if random.random() > 0.5:
target = np.fliplr(target)
img = img.transpose(Image.FLIP_LEFT_RIGHT)
target = cv2.resize(target, (target.shape[1] // 8, target.shape[0] // 8), interpolation=cv2.INTER_CUBIC) * 64
return img, target