Morrizzzzz
/
Counting-from-Sky-A-Large-scale-Dataset-for-Remote-Sensing-Object-Counting-and-A-Benchmark-Method
Public
forked from gaoguangshuai/Counting-from-Sky-A-Large-scale-Dataset-for-Remote-Sensing-Object-Counting-and-A-Benchmark-Method
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
69 lines (52 loc) · 1.76 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import h5py
import scipy.io as io
import PIL.Image as Image
import numpy as np
import os
import glob
from matplotlib import pyplot as plt
from scipy.ndimage.filters import gaussian_filter
import scipy
import json
import torchvision.transforms.functional as F
from matplotlib import cm as CM
from image import *
from model import ASPDNet
import torch
from torchvision import datasets, transforms
transform=transforms.Compose([
transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
root = '..'
#now generate the building's ground truth
building_train = os.path.join(root,'../train_data','images')
building_test = os.path.join(root,'../test_data','images')
path_sets = [building_test]
img_paths = []
for path in path_sets:
for img_path in glob.glob(os.path.join(path, '*.jpg')):
img_paths.append(img_path)
model = ASPDNet()
model = model.cuda()
checkpoint = torch.load('model_best.pth.tar')
model.load_state_dict(checkpoint['state_dict'])
mae = 0
mse = 0
for i in range(len(img_paths)):
file_path, filename = os.path.split(img_paths[i])
img = transform(Image.open(img_paths[i]).convert('RGB')).cuda()
gt_file = h5py.File(img_paths[i].replace('.jpg','.h5').replace('images','ground_truth'),'r')
groundtruth = np.asarray(gt_file['density'])
gt_count = np.sum(groundtruth)
print(gt_count)
with torch.no_grad():
output = model(img.unsqueeze(0))
pre_count = output.detach().cpu().sum().numpy()
mae += abs(pre_count-gt_count)
mse += (pre_count - gt_count) * (pre_count - gt_count)
mae = mae/len(img_paths)
mse = np.sqrt(mse/len(img_paths))
print(mae)
print(mse)