forked from facebookresearch/fairseq-lua
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.lua
467 lines (427 loc) · 17.2 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
-- Copyright (c) 2017-present, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the license found in the LICENSE file in
-- the root directory of this source tree. An additional grant of patent rights
-- can be found in the PATENTS file in the same directory.
--
--[[
--
-- Main training script.
--
--]]
require 'rnnlib'
require 'xlua'
require 'optim'
require 'fairseq'
local tnt = require 'torchnet'
local plpath = require 'pl.path'
local pltablex = require 'pl.tablex'
local hooks = require 'fairseq.torchnet.hooks'
local data = require 'fairseq.torchnet.data'
local search = require 'fairseq.search'
local utils = require 'fairseq.utils'
local cuda = utils.loadCuda()
-- we require cuda for training
assert(cuda.cutorch)
local cmd = torch.CmdLine()
cmd:option('-sourcelang', 'de', 'source language')
cmd:option('-targetlang', 'en', 'target language')
cmd:option('-datadir', 'data-bin')
cmd:option('-model', 'avgpool', 'model type {avgpool|blstm|conv|fconv}')
cmd:option('-nembed', 256, 'dimension of embeddings and attention')
cmd:option('-noutembed', 256, 'dimension of the output embeddings')
cmd:option('-nhid', 256, 'number of hidden units per layer')
cmd:option('-nlayer', 1, 'number of hidden layers in decoder')
cmd:option('-nenclayer', 1, 'number of hidden layers in encoder')
cmd:option('-nagglayer', -1,
'number of layers for conv encoder aggregation stack (CNN-c)')
cmd:option('-kwidth', 3, 'kernel width for conv encoder')
cmd:option('-klmwidth', 3, 'kernel width for convolutional language models')
cmd:option('-optim', 'sgd', 'optimization algortihm {sgd|adam|nag}')
-- See note about normalization and hyper-parameters below
cmd:option('-timeavg', false,
'average gradients over time (as well as sequences)')
cmd:option('-lr', 0.1, 'learning rate (per time step without -timeavg)')
cmd:option('-lrshrink', 10, 'learning rate shrinking factor for annealing')
cmd:option('-momentum', 0, 'momentum for sgd/nag optimizers')
cmd:option('-annealing_type', 'fast',
'whether to decrease learning rate with a fast or slow schedule')
cmd:option('-noearlystop', false, 'no early stopping for Adam/Adagrad')
cmd:option('-batchsize', 32, 'batch size (number of sequences)')
cmd:option('-bptt', 25, 'back-prop through time steps')
cmd:option('-maxbatch', 0, 'maximum number of tokens per batch')
cmd:option('-clip', 25,
'clip threshold of gradients (per sequence without -timeavg)')
cmd:option('-maxepoch', 100, 'maximum number of epochs')
cmd:option('-minepochtoanneal', 0, 'minimum number of epochs before annealing')
cmd:option('-maxsourcelen', 0,
'maximum source sentence length in training data')
cmd:option('-ndatathreads', 1, 'number of threads for data preparation')
cmd:option('-log_interval', 1000, 'log training statistics every n updates')
cmd:option('-save_interval', -1,
'save snapshot every n updates (defaults to once per epoch)')
cmd:option('-init_range', 0.05, 'range for random weight initialization')
cmd:option('-savedir', '.', 'save models here')
cmd:option('-nosave', false, 'don\'t save models and checkpoints')
cmd:option('-nobleu', false, 'don\'t produce final BLEU scores')
cmd:option('-notext', false, 'don\'t produce final generation output')
cmd:option('-validbleu', false, 'produce validation BLEU scores on checkpoints')
cmd:option('-log', false, 'whether to enable structured logging')
cmd:option('-seed', 1111, 'random number seed')
cmd:option('-aligndictpath', '', 'path to an alignment dictionary (optional)')
cmd:option('-nmostcommon', 500,
'the number of most common words to keep when using alignment')
cmd:option('-topnalign', 100, 'the number of the most common alignments to use')
cmd:option('-freqthreshold', 0,
'the minimum frequency for an alignment candidate in order' ..
'to be considered (default no limit)')
cmd:option('-ngpus', cuda.cutorch:getDeviceCount(),
'number of gpus for data parallel training')
cmd:option('-dropout_src', -1, 'dropout on source embeddings')
cmd:option('-dropout_tgt', -1, 'dropout on target embeddings')
cmd:option('-dropout_out', -1, 'dropout on decoder output')
cmd:option('-dropout_hid', -1, 'dropout between layers')
cmd:option('-dropout', 0, 'set negative dropout_* options to this value')
-- Options for fconv_model
cmd:option('-cudnnconv', false, 'use cudnn.TemporalConvolution (slower)')
cmd:option('-attnlayers', '-1', 'decoder layers with attention (-1: all)')
cmd:option('-bfactor', 0, 'factor to divide nhid in bottleneck structure')
cmd:option('-fconv_nhids', '',
'comma-separated list of hidden units for each encoder layer')
cmd:option('-fconv_nlmhids', '',
'comma-separated list of hidden units for each decoder layer')
cmd:option('-fconv_kwidths', '',
'comma-separated list of kernel widths for conv encoder')
cmd:option('-fconv_klmwidths', '',
'comma-separated list of kernel widths for convolutional language model')
local config = cmd:parse(arg)
if config.dropout_src < 0 then config.dropout_src = config.dropout end
if config.dropout_tgt < 0 then config.dropout_tgt = config.dropout end
if config.dropout_out < 0 then config.dropout_out = config.dropout end
if config.dropout_hid < 0 then config.dropout_hid = config.dropout end
-- parse hidden sizes and kernel widths
if config.model == 'fconv' then
-- encoder
config.nhids = utils.parseListOrDefault(
config.fconv_nhids, config.nenclayer, config.nhid)
config.kwidths = utils.parseListOrDefault(
config.fconv_kwidths, config.nenclayer, config.kwidth)
-- deconder
config.nlmhids = utils.parseListOrDefault(
config.fconv_nlmhids, config.nlayer, config.nhid)
config.klmwidths = utils.parseListOrDefault(
config.fconv_klmwidths, config.nlayer, config.klmwidth)
end
torch.manualSeed(config.seed)
cuda.cutorch.manualSeed(config.seed)
assert(config.ngpus >= 1 and config.ngpus <= cuda.cutorch.getDeviceCount())
-- Effective batchsize equals to the base batchsize * ngpus
config.batchsize = config.batchsize * config.ngpus
config.maxbatch = config.maxbatch * config.ngpus
-------------------------------------------------------------------
-- Load data
-------------------------------------------------------------------
config.dict = torch.load(plpath.join(config.datadir,
'dict.' .. config.targetlang .. '.th7'))
print(string.format('| [%s] Dictionary: %d types', config.targetlang,
config.dict:size()))
config.srcdict = torch.load(plpath.join(config.datadir,
'dict.' .. config.sourcelang .. '.th7'))
print(string.format('| [%s] Dictionary: %d types', config.sourcelang,
config.srcdict:size()))
if config.aligndictpath ~= '' then
config.aligndict = tnt.IndexedDatasetReader{
indexfilename = config.aligndictpath .. '.idx',
datafilename = config.aligndictpath .. '.bin',
mmap = true,
mmapidx = true,
}
config.nmostcommon = math.max(config.nmostcommon, config.dict.nspecial)
config.nmostcommon = math.min(config.nmostcommon, config.dict:size())
end
local train, test = data.loadCorpus{
config = config,
trainsets = {'train'},
testsets = {'valid', 'test'},
}
local corpus = {
train = train.train,
valid = test.valid,
test = test.test,
}
-------------------------------------------------------------------
-- Setup models and training criterions
-------------------------------------------------------------------
local seed = config.seed
local thread_init_fn = function(id)
require 'nn'
require 'cunn'
require 'nngraph'
require 'rnnlib'
require 'fairseq.models.utils'
require 'fairseq'
require 'fairseq.torchnet'
require 'threads'
require 'torchnet'
require 'argcheck'
require 'cutorch'
-- Make sure we have a different seed for each thread so that random
-- pertubations during training (e.g. dropout) are different for each
-- worker.
torch.manualSeed(seed + id - 1)
cutorch.manualSeed(seed + id - 1)
end
local make_model_fn = function(id)
local model = require(
string.format('fairseq.models.%s_model',
config.model)
).new(config)
model:cuda()
return model
end
local make_criterion_fn = function(id)
-- Don't produce losses and gradients for the padding symbol
local padindex = config.dict:getIndex(config.dict.pad)
local critweights = torch.ones(config.dict:size()):cuda()
critweights[padindex] = 0
local criterion = nn.CrossEntropyCriterion(critweights, false):cuda()
return criterion, critweights
end
-------------------------------------------------------------------
-- Torchnet engine setup
-------------------------------------------------------------------
engine = tnt.ResumableDPOptimEngine(
config.ngpus, thread_init_fn, make_model_fn, make_criterion_fn
)
local lossMeter = tnt.AverageValueMeter()
local checkpointLossMeter = tnt.AverageValueMeter()
local timeMeter = tnt.TimeMeter{unit = true}
local checkpointTimeMeter = tnt.TimeMeter{unit = true}
-- NOTE: Gradient normalization/averaging and hyper-parameters
-- Mini-batches have two dimensions: number of sequences (usually called batch
-- size) and number of tokens (i.e. time steps for recurrent models). Now, there
-- are two modes of normalizing gradients: by batch size only or by the total
-- number of non-padding tokens in the mini-batch (by batch size and time
-- steps). The second option can be activated with -timeavg. However, keep in
-- mind that the learning rate and clipping hyper-parameters have different
-- meanings for each mode:
-- * When normalizing by batch size only, the learning rate is specified per
-- time step and the clipping threshold is specified per sequence.
-- * When normalizing by total number of tokens, both learning rate and
-- clipping threshold are applied directly to the normalized gradients.
-- The first mode is implemented by not normalizing gradients at all, but rather
-- by dividing the learning rate by batch size and multiplying the clipping
-- factor by batch size. For higher-order methods like Adam that perform
-- normalizations to decouple the learning rate from the magnitude of gradients,
-- the learning rate is not divided by the batch size.
-- For models trained with bptt (i.e. recurrent decoders), normalizing
-- by batch size only tends to work a little better; for non-recurrent models
-- with -bptt 0, the second option is preferred.
local optalgConfig = {
learningRate = config.lr,
timeAverage = config.timeavg,
}
config.lrscale = 1 -- for logging
config.minlr = 1e-4 -- when to stop annealing
if config.optim == 'sgd' then
optalgConfig.method = optim.sgd
optalgConfig.momentum = config.momentum
if not optalgConfig.timeAverage then
optalgConfig.learningRate = optalgConfig.learningRate / config.batchsize
config.lrscale = config.batchsize
config.minlr = config.minlr / config.batchsize
end
elseif config.optim == 'adam' then
optalgConfig.method = optim.adam
elseif config.optim == 'nag' then
optalgConfig.method = require('fairseq.optim.nag')
optalgConfig.momentum = config.momentum
config.minlr = 1e-5
else
error('wrong optimization algorithm')
end
local runGeneration, genconfig, gensets = nil, nil, {}
if not config.nobleu or config.validbleu then
genconfig = pltablex.copy(config)
genconfig.bptt = 0
genconfig.beam = 1
genconfig._maxlen = 200
genconfig.batchsize = config.batchsize
genconfig.ngpus = 1
_, gensets = data.loadCorpus{
config = genconfig,
testsets = {'valid', 'test'},
}
end
if config.validbleu then
local model = engine:model()
runGeneration = hooks.runGeneration{
model = model,
dict = config.dict,
generate = function(model, sample)
genconfig.minlen = 1
genconfig.maxlen = genconfig._maxlen
local searchf = search.greedy(model:type(), genconfig.dict,
genconfig.maxlen)
return model:generate(genconfig, sample, searchf)
end,
}
end
-- Save engine state at checkpoints
local saveEpochState = function(state) end
local epochStatePath = plpath.join(config.savedir, 'state_epoch%d.th7')
local saveLastState = function(state) end
local lastStatePath = plpath.join(config.savedir, 'state_last.th7')
if not config.nosave then
saveEpochState = hooks.saveStateHook(engine, epochStatePath)
saveLastState = hooks.saveStateHook(engine, lastStatePath)
end
-- Setup engine hooks
engine.hooks.onStart = function(state)
if not state.checkpoint then
state.checkpoint = 0
end
end
engine.hooks.onStartEpoch = hooks.shuffleData(seed)
engine.hooks.onJumpToEpoch = hooks.shuffleData(seed)
local annealing = (config.optim == 'sgd' or config.optim == 'nag')
local onCheckpoint = hooks.call{
function(state)
state.checkpoint = state.checkpoint + 1
end,
hooks.onCheckpoint{
engine = engine,
config = config,
lossMeter = checkpointLossMeter,
timeMeter = checkpointTimeMeter,
runTest = hooks.runTest(engine),
testsets = {valid = corpus.valid, test = corpus.test},
runGeneration = runGeneration,
gensets = {valid = gensets.valid},
annealing = annealing,
earlyStopping = (not annealing and not config.noearlystop),
},
function(state)
checkpointLossMeter:reset()
checkpointTimeMeter:reset()
lossMeter:reset()
timeMeter:reset()
engine:training()
end,
saveEpochState,
saveLastState,
}
engine.hooks.onUpdate = hooks.call{
hooks.updateMeters{
lossMeter = lossMeter,
timeMeter = timeMeter,
},
hooks.updateMeters{
lossMeter = checkpointLossMeter,
timeMeter = checkpointTimeMeter,
},
function(state)
if timeMeter.n == config.log_interval then
local loss = lossMeter:value() / math.log(2)
local ppl = math.pow(2, loss)
local elapsed = timeMeter.n * timeMeter:value()
local statsstr = string.format(
'| epoch %03d | %07d updates | words/s %7d' ..
'| trainloss %8.2f | train ppl %8.2f',
state.epoch, state.t, lossMeter.n / elapsed, loss, ppl)
if state.dictstats then
statsstr = statsstr .. string.format(
' | avg_dict_size %.2f',
state.dictstats.size / state.dictstats.n)
end
print(statsstr)
io.stdout:flush()
timeMeter:reset()
lossMeter:reset()
end
if config.save_interval > 0 and
state.epoch_t % config.save_interval == 0 then
saveLastState(state)
end
end
}
engine.hooks.onEndEpoch = onCheckpoint
engine.hooks.onEnd = saveLastState
engine.hooks.onSample = hooks.computeSampleStats(config.dict)
if plpath.isfile(lastStatePath) and not config.nosave then
print('| Found existing state, attempting to resume training')
engine.hooks.onJumpToSample = function(state)
-- Jumping to a sample can be time-consuming. If, for some reason, you
-- find yourself frequently resuming from a saved state, increase
-- -ndatathreads to speed this up -- but keep in mind that this makes
-- the sample order non-deterministic.
if state.jumped % config.log_interval == 0 then
print(string.format(
'| epoch %03d | %07d updates | %07d epoch updates | %07d replayed',
state.epoch, state.t, state.epoch_t, state.jumped))
end
end
-- Support modifying the maxepoch setting during resume
engine.hooks.onResume = function(state)
state.maxepoch = config.maxepoch
end
engine:resume{
path = lastStatePath,
iterator = corpus.train,
}
else
engine:train{
iterator = corpus.train,
optconfig = optalgConfig,
maxepoch = config.maxepoch,
clip = config.clip,
}
end
local function runFinalEval()
-- Evaluate the best network on the supplied test set
local path = plpath.join(config.savedir, 'model_best.th7')
local best_model = torch.load(path)
genconfig.batchsize = 1
genconfig.minlen = 1
genconfig.maxlen = genconfig._maxlen
for _, beam in ipairs({1, 5, 10, 20}) do
genconfig.beam = beam
if not config.notext then
genconfig.outfile = plpath.join(
config.savedir, string.format('gen-b%02d.txt', beam)
)
end
local searchf = search.beam{
ttype = best_model:type(),
dict = genconfig.dict,
srcdict = genconfig.srcdict,
beam = genconfig.beam
}
local _, result = hooks.runGeneration{
model = best_model,
dict = genconfig.dict,
generate = function(model, sample)
return model:generate(genconfig, sample, searchf)
end,
outfile = genconfig.outfile,
srcdict = config.srcdict,
}(gensets.test)
print(string.format('| Test with beam=%d: %s', beam, result))
io.stdout:flush()
end
end
if not config.nobleu and not config.nosave then
engine:executeAll(
function(id)
_G.model:network():clearState()
_G.model = nil
_G.params = nil
_G.gradparams = nil
collectgarbage()
end
)
corpus, engine = nil, nil
collectgarbage()
runFinalEval()
end